Multiple regulatory mechanisms for pH homeostasis in the gastric pathogen, Helicobacter pylori.

Adv Genet

Department of Biology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, Ottawa, Canada. Electronic address:

Published: November 2022

Acid-resistance in gastric pathogen Helicobacter pylori requires the coordination of four essential processes to regulate urease activity. Firstly, urease expression above a base level needs to be finely tuned at different ambient pH. Secondly, as nickel is needed to activate urease, nickel homeostasis needs to be maintained by proteins that import and export nickel ions, and sequester, store and release nickel when needed. Thirdly, urease accessary proteins that activate urease activity by nickel insertion need to be expressed. Finally, a reliable source of urea needs to be maintained by both intrinsic and extrinsic sources of urea. Two-component systems (arsRS and flgRS), as well as a nickel response regulator (NikR), sense the change in pH and act on a variety of genes to accomplish the function of acid resistance without causing cellular overalkalization and nickel toxicity. Nickel storage proteins also feature built-in switches to store nickel at neutral pH and release nickel at low pH. This review summarizes the current status of H. pylori research and highlights a number of hypotheses that need to be tested.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.adgen.2022.07.001DOI Listing

Publication Analysis

Top Keywords

nickel
10
gastric pathogen
8
pathogen helicobacter
8
helicobacter pylori
8
urease activity
8
nickel needed
8
activate urease
8
release nickel
8
urease
5
multiple regulatory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!