A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A review on the sustainable procurement of microalgal biomass from wastewaters for the production of biofuels. | LitMetric

A review on the sustainable procurement of microalgal biomass from wastewaters for the production of biofuels.

Chemosphere

Applied and Environmental Microbiology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan. Electronic address:

Published: January 2023

The feasibility of microalgal biomass as one of the most promising and renewable sources for the production of biofuels is being studied extensively. Microalgal biomass can be cultivated under photoautotrophic, heterotrophic, photoheterotrophic, and mixotrophic cultivation conditions. Photoautotrophic cultivation is the most common way of microalgal biomass production. Under mixotrophic cultivation, microalgae can utilize both organic carbon and CO simultaneously. Mixotrophic cultivation depicts higher biomass productivity as compared to photoautotrophic cultivation. It is evident from the literature that mixotrophic cultivation yields higher quantities of polyunsaturated fatty acids as compared to that photoautotrophic cultivation. In this context, for economical biomass production, the organic carbon of industrial wastewaters can be valorized for the mixotrophic cultivation of microalgae. Following the way, contaminants' load of wastewaters can be reduced while concomitantly producing highly productive microalgal biomass. This review focuses on different aspects covering the sustainable cultivation of different microalgal species in different types of wastewaters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.137094DOI Listing

Publication Analysis

Top Keywords

microalgal biomass
20
mixotrophic cultivation
20
photoautotrophic cultivation
12
cultivation
9
production biofuels
8
biomass production
8
cultivation microalgae
8
organic carbon
8
compared photoautotrophic
8
biomass
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!