Bowhead NEIL1: molecular cloning, characterization, and enzymatic properties.

Biochimie

Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark. Electronic address:

Published: March 2023

Nei Like DNA Glycosylase 1 (NEIL1) is a DNA glycosylase, which specifically processes oxidative DNA damage by initiating base excision repair. NEIL1 recognizes and removes bases, primarily oxidized pyrimidines, which have been damaged by endogenous oxidation or exogenous mutagenic agents. NEIL1 functions through a combined glycosylase/AP (apurinic/apyrimidinic)-lyase activity, whereby it cleaves the N-glycosylic bond between the DNA backbone and the damaged base via its glycosylase activity and hydrolysis of the DNA backbone through beta-delta elimination due to its AP-lyase activity. In our study we investigated our hypothesis proposing that the cancer resistance of the bowhead whale can be associated with a better DNA repair with NEIL1 being upregulated or more active. Here, we report the molecular cloning and characterization of three transcript variants of bowhead whale NEIL1 of which two were homologous to human transcripts. In addition, a novel NEIL1 transcript variant was found. A differential expression of NEIL mRNA was detected in bowhead eye, liver, kidney, and muscle. The A-to-I editing of NEIL1 mRNA was shown to be conserved in the bowhead and two adenosines in the 242Lys codon were subjected to editing. A mass spectroscopy analysis of liver and eye tissue failed to demonstrate the existence of a NEIL1 isoform originating from RNA editing. Recombinant bowhead and human NEIL1 were expressed in E. coli and assayed for enzymatic activity. Both bowhead and human recombinant NEIL1 catalyzed, with similar efficiency, the removal of a 5-hydroxyuracil lesion in a DNA bubble structure. Hence, these results do not support our hypothesis but do not refute the hypothesis either.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2022.10.014DOI Listing

Publication Analysis

Top Keywords

neil1
10
molecular cloning
8
cloning characterization
8
dna glycosylase
8
repair neil1
8
dna backbone
8
bowhead whale
8
bowhead human
8
bowhead
7
dna
7

Similar Publications

Abnormal base excision repair (BER) pathway and N6-methyladenosine (m6A) of RNA have been proved to be significantly related to age-related cataract (ARC) pathogenesis. However, the relationship between the Nei Endonuclease VIII-Like1 (NEIL1) gene (a representative DNA glycosylase of BER pathway) and its m6A modification remains unclear. Here, we showed that the expression of NEIL1 was decreased in the ARC anterior lens capsules and HO-stimulated SRA01/04 cells.

View Article and Find Full Text PDF

NEIL1: the second DNA glycosylase involved in action-at-a-distance mutations induced by 8-oxo-7,8-dihydroguanine.

Free Radic Biol Med

January 2025

Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan. Electronic address:

8-Oxo-7,8-dihydroguanine (G, 8-hydroxyguanine), an oxidatively damaged base, induces mutations and is involved in cancer initiation. In addition to G:C→T:A transversions at the damaged site, it causes untargeted base substitution (action-at-a-distance) mutations at the G bases of 5'-GpA-3' sites in human cells. Paradoxically, OGG1, a DNA glycosylase involved in the base excision repair (BER) pathway, enhances the action-at-a-distance mutations by G.

View Article and Find Full Text PDF

E-cigarettes (E.cigs) cause inflammation and damage to human organs, including the lungs and heart. In the gut, E.

View Article and Find Full Text PDF

Dietary exposure to aflatoxin B1 (AFB1) is a risk factor for the development of hepatocellular carcinomas. Following metabolic activation, AFB1 reacts with guanines to form covalent DNA adducts, which induce high-frequency G > T transversions. The molecular signature associated with these mutational events aligns with the single-base substitution signature 24 (SBS24) in the Catalog of Somatic Mutations in Cancer database.

View Article and Find Full Text PDF

The human NEIL1 DNA glycosylase is one of 11 mammalian glycosylases that initiate base excision repair. While substrate preference, catalytic mechanism, and structural information of NEIL1's ordered residues are available, limited information on its subcellular localization, compounded by relatively low endogenous expression levels, have impeded our understanding of NEIL1. Here, we employed a previously developed computational framework to optimize the mitochondrial localization signal of NEIL1, enabling the visualization of its specific targeting to the mitochondrion via confocal microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!