Contrasting modes of macro and microsynteny evolution in a eukaryotic subphylum.

Curr Biol

Department of Biological Sciences, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany. Electronic address:

Published: December 2022

Examination of the changes in order and arrangement of homologous genes is key for understanding the mechanisms of genome evolution in eukaryotes. Previous comparisons between eukaryotic genomes have revealed considerable conservation across species that diverged hundreds of millions of years ago (e.g., vertebrates, bilaterian animals, and filamentous fungi). However, understanding how genome organization evolves within and between eukaryotic major lineages remains underexplored. We analyzed high-quality genomes of 120 representative budding yeast species (subphylum Saccharomycotina) spanning ∼400 million years of eukaryotic evolution to examine how their genome organization evolved and to compare it with the evolution of animal and plant genome organization. We found that the decay of both macrosynteny (the conservation of homologous chromosomes) and microsynteny (the conservation of local gene content and order) was strongly associated with evolutionary divergence across budding yeast major clades. However, although macrosynteny decayed very fast, within ∼100 million years, the microsynteny of many genes-especially genes in metabolic clusters (e.g., in the GAL gene cluster)-was much more deeply conserved both within major clades and across the subphylum. We further found that when genomes with similar evolutionary divergence times were compared, budding yeasts had lower macrosynteny conservation than animals and filamentous fungi but higher conservation than angiosperms. In contrast, budding yeasts had levels of microsynteny conservation on par with mammals, whereas angiosperms exhibited very low conservation. Our results provide new insight into the tempo and mode of the evolution of gene and genome organization across an entire eukaryotic subphylum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615371PMC
http://dx.doi.org/10.1016/j.cub.2022.10.025DOI Listing

Publication Analysis

Top Keywords

genome organization
16
eukaryotic subphylum
8
animals filamentous
8
filamentous fungi
8
budding yeast
8
macrosynteny conservation
8
microsynteny conservation
8
evolutionary divergence
8
major clades
8
budding yeasts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!