A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The human egomotion network. | LitMetric

The human egomotion network.

Neuroimage

German Center for Vertigo and Balance Disorders, IFB-LMU, University Hospital Munich, Ludwig-Maximilians-University Munich, Marchionini Str. 15, 81377 Munich, Germany; Graduate School of Systemic Neurosciences, Department of Biology II and Neurobiology, Großhaderner Str. 2, 82151 Planegg-Martinsried, Ludwig-Maximilians-University Munich, Germany; Institute for Neuroradiology, University Hospital Munich, Marchionini Str. 15, 81377 Munich, Ludwig-Maximilians-University Munich, Germany.

Published: December 2022

AI Article Synopsis

  • The study investigates how the brain processes self-motion signals by using whole-brain neuroimaging to identify the egomotion network in a large group of participants.
  • Key brain areas involved in this network were pinpointed, including the cingulate sulcus, cerebellum, and temporo-parietal cortex, suggesting a connection with multisensory integration and spatial awareness.
  • Findings indicate that specific connections, particularly between the cingulate sulcus and cerebellum, play a crucial role in perceiving egomotion, enhancing our understanding of how different sensory inputs combine for movement perception.

Article Abstract

All volitional movement in a three-dimensional space requires multisensory integration, in particular of visual and vestibular signals. Where and how the human brain processes and integrates self-motion signals remains enigmatic. Here, we applied visual and vestibular self-motion stimulation using fast and precise whole-brain neuroimaging to delineate and characterize the entire cortical and subcortical egomotion network in a substantial cohort (n=131). Our results identify a core egomotion network consisting of areas in the cingulate sulcus (CSv, PcM/pCi), the cerebellum (uvula), and the temporo-parietal cortex including area VPS and an unnamed region in the supramarginal gyrus. Based on its cerebral connectivity pattern and anatomical localization, we propose that this region represents the human homologue of macaque area 7a. Whole-brain connectivity and gradient analyses imply an essential role of the connections between the cingulate sulcus and the cerebellar uvula in egomotion perception. This could be via feedback loops involved updating visuo-spatial and vestibular information. The unique functional connectivity patterns of PcM/pCi hint at central role in multisensory integration essential for the perception of self-referential spatial awareness. All cortical egomotion hubs showed modular functional connectivity with other visual, vestibular, somatosensory and higher order motor areas, underlining their mutual function in general sensorimotor integration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2022.119715DOI Listing

Publication Analysis

Top Keywords

egomotion network
12
visual vestibular
12
multisensory integration
8
cingulate sulcus
8
functional connectivity
8
human egomotion
4
network volitional
4
volitional movement
4
movement three-dimensional
4
three-dimensional space
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!