Context: A role of DNA methylation in Graves orbitopathy (GO) has been proposed.
Objective: This work aimed to investigate DNA methylation and gene expression in orbital fibroblasts from control and GO patients, under basal conditions or following challenge with an anti- thyrotropin (TSH) receptor antibody (M22) or cytokines involved in GO; to investigate the relationship between DNA methylation and cell function (proliferation); and to perform a methylome analysis.
Methods: Orbital fibroblasts from 6 GO and 6 control patients from a referral center underwent methylome analysis of the whole genome.
Results: Global DNA methylation increased significantly both in control and GO fibroblasts on incubation with M22. Expression of 2 selected genes (CYP19A1 and AIFM2) was variably affected by M22 and interleukin-6. M22 increased cell proliferation in control and GO fibroblasts, which correlated with global DNA methylation. Methylome analysis revealed 19 869 DNA regions differently methylated in GO fibroblasts, encompassing 3957 genes and involving CpG islands, shores, and shelves. A total of 119 gene families and subfamilies, 89 protein groups, 402 biological processes, and 7 pathways were involved. Three genes found to be differentially expressed were concordantly hypermethylated or hypomethylated. Among the differently methylated genes, insulin-like growth factor-1 receptor and several fibroblast growth factors and receptors were included.
Conclusion: We propose that, when exposed to an autoimmune environment, orbital fibroblasts undergo hypermethylation or hypomethylation of certain genes, involving CpG promoters, which results in differential gene expression, which may be responsible for functional alterations, in particular higher proliferation, and ultimately for the GO phenotype in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/clinem/dgac645 | DOI Listing |
Gene
January 2025
School of Life Sciences, Fudan University, Shanghai 200433, China; MOE Engineering Research Center of Gene Technology, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200433, China. Electronic address:
Bisphenol A (BPA) is a widely used industrial compound commonly found in various everyday plastic products. Known for its endocrine-disrupting properties, BPA can enter the human body through multiple pathways. Prenatal exposure to BPA not only disrupts placental structure and function but also interferes with normal steroid metabolism.
View Article and Find Full Text PDFBioorg Med Chem
December 2024
Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States. Electronic address:
Protein methylation regulates diverse cellular processes including gene expression and DNA repair. This review discusses the methods of identifying and validating substrates for protein methyltransferases (MTases), as well as the biological roles of methylation. Meanwhile, we outline continued efforts necessary to fully map MTase-substrate pairs and uncover the complex regulatory roles of protein methylation in cellular function.
View Article and Find Full Text PDFAging (Albany NY)
January 2025
Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, USA.
Background: DNA methylation (DNAm) data from human samples has been leveraged to develop "epigenetic clock" algorithms that predict age and other aging-related phenotypes. Some DNAm clocks were trained using DNAm obtained from blood cells, while other clocks were trained using data from diverse tissue/cell types. To assess how DNAm clocks perform across non-blood tissue types, we applied DNAm algorithms to DNAm data generated from 9 different human tissue types.
View Article and Find Full Text PDFBMC Mol Cell Biol
January 2025
Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland.
Childhood maltreatment exposure (CME) increases the risk of adverse long-term health consequences for the exposed individual. Animal studies suggest that CME may also influence the health and behaviour in the next generation offspring through CME-driven epigenetic changes in the germ line. Here we investigated the associated between early life stress on the epigenome of sperm in humans with history of CME.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!