Lab at home: a promising prospect for on-site chemical and biological analysis.

Anal Bioanal Chem

Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.

Published: January 2023

The continuing pursuit for a healthy life has led to the urgent need for on-site analysis. In response to the urgent needs of on-site analysis, we propose a novel concept, called lab at home (LAH), for building automated and integrated total analysis systems to perform chemical and biological testing at home. It represents an emerging research area with broad prospects that has not yet attracted sufficient attention. In this paper, we discuss the urgent need, challenges, and future prospects of this area, and the possible roadmap for achieving the goal of LAH has also been proposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9638225PMC
http://dx.doi.org/10.1007/s00216-022-04392-xDOI Listing

Publication Analysis

Top Keywords

chemical biological
8
urgent on-site
8
on-site analysis
8
lab promising
4
promising prospect
4
prospect on-site
4
on-site chemical
4
analysis
4
biological analysis
4
analysis continuing
4

Similar Publications

The interaction of bacteria and harmonine in harlequin ladybird confers an interspecies competitive edge.

Proc Natl Acad Sci U S A

January 2025

Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

The harlequin ladybird, , is a predatory beetle used globally to control pests such as aphids and scale insects. Originating from East Asia, this species has become highly invasive since its introduction in the late 19th century to Europe and North America, posing a threat to local biodiversity. Intraguild predation is hypothesized to drive the success of this invasive species, but the underlying mechanisms remain unknown.

View Article and Find Full Text PDF

Genesis and regulation of C-terminal cyclic imides from protein damage.

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.

C-Terminal cyclic imides are posttranslational modifications that can arise from spontaneous intramolecular cleavage of asparagine or glutamine residues resulting in a form of irreversible protein damage. These protein damage events are recognized and removed by the E3 ligase substrate adapter cereblon (CRBN), indicating that these aging-related modifications may require cellular quality control mechanisms to prevent deleterious effects. However, the factors that determine protein or peptide susceptibility to C-terminal cyclic imide formation or their effect on protein stability have not been explored in detail.

View Article and Find Full Text PDF

Electron transfer in polysaccharide monooxygenase catalysis.

Proc Natl Acad Sci U S A

January 2025

California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).

View Article and Find Full Text PDF

The "" under this Perspective underline the importance of interdisciplinary collaboration and partnerships across several disciplines, such as medical science and technology, medicine, bioengineering, and computational approaches, in bridging the gap between research, manufacturing, and clinical applications. Effective communication is key to bridging team gaps, enhancing trust, and resolving conflicts, thereby fostering teamwork and individual growth toward shared goals. Drawing from the success of the COVID-19 vaccine development, we advocate the application of similar collaborative models in other complex health areas such as nanomedicine and biomedical engineering.

View Article and Find Full Text PDF

Precise Sizing and Collision Detection of Functional Nanoparticles by Deep Learning Empowered Plasmonic Microscopy.

Adv Sci (Weinh)

January 2025

Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.

Single nanoparticle analysis is crucial for various applications in biology, materials, and energy. However, precisely profiling and monitoring weakly scattering nanoparticles remains challenging. Here, it is demonstrated that deep learning-empowered plasmonic microscopy (Deep-SM) enables precise sizing and collision detection of functional chemical and biological nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!