AI Article Synopsis

  • The human macula is a specialized retinal area rich in cone cells, but the adaptation of Müller cells, the main glial cells in the retina, to this unique environment is not well understood.
  • Comparisons of proteomic data from both cone- and rod-rich retinas in humans and mice revealed distinct expression profiles of Müller cells associated with cones and rods, focusing on pathways related to the extracellular matrix and cell adhesion.
  • The study found that epiplakin (EPPK1), which is important for intermediate filament organization, is highly expressed in macular Müller cells and is crucial for maintaining cell structure and mechanical function, as EPPK1 knockout led to decreased cell forces and altered cell characteristics.

Article Abstract

The human macula is a highly specialized retinal region with pit-like morphology and rich in cones. How Müller cells, the principal glial cell type in the retina, are adapted to this environment is still poorly understood. We compared proteomic data from cone- and rod-rich retinae from human and mice and identified different expression profiles of cone- and rod-associated Müller cells that converged on pathways representing extracellular matrix and cell adhesion. In particular, epiplakin (EPPK1), which is thought to play a role in intermediate filament organization, was highly expressed in macular Müller cells. Furthermore, EPPK1 knockout in a human Müller cell-derived cell line led to a decrease in traction forces as well as to changes in cell size, shape, and filopodia characteristics. We here identified EPPK1 as a central molecular player in the region-specific architecture of the human retina, which likely enables specific functions under the immense mechanical loads in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.24283DOI Listing

Publication Analysis

Top Keywords

müller cells
12
human
5
müller
5
cell
5
retinal regions
4
regions shape
4
shape human
4
human murine
4
murine müller
4
müller cell
4

Similar Publications

Chronic inflammatory liver disease with an acute deterioration of liver function is named acute-on-chronic inflammation and could be regulated by the metabolic impairments related to the liver dysfunction. In this way, the experimental cholestasis model is excellent for studying metabolism in both types of inflammatory responses. Along the evolution of this model, the rats develop biliary fibrosis and an acute-on-chronic decompensation.

View Article and Find Full Text PDF

Portal hypertension is a common complication of liver disease, either acute or chronic. Consequently, in chronic liver disease, such as the hypertensive mesenteric venous pathology, the coexisting inflammatory response is classically characterized by the splanchnic blood circulation. However, a vascular lymphatic pathology is produced simultaneously with the splanchnic arterio-venous impairments.

View Article and Find Full Text PDF

Mast cell-mediated splanchnic cholestatic inflammation.

Clin Res Hepatol Gastroenterol

October 2019

Department of Surgery, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain. Electronic address:

Introduction: Splanchnic mast cells increase in chronic liver and in acute-on-chronic liver diseases. We administered Ketotifen, a mast cell stabilizer, and measured the mast cells in the splanchnic organs of cholestatic rats.

Material And Methods: These groups were studied: sham-operated rats (S; n = 15), untreated microsurgical cholestasic rats (C; n = 20) and rats treated with Ketotifen: early (SK-e; n = 20 and CKe; n = 18), and late (SK-l; n = 15 and CK-l; n = 14).

View Article and Find Full Text PDF

Carcinogenesis: the cancer cell-mast cell connection.

Inflamm Res

February 2019

Department of Surgery, School of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal s.n., 28040, Madrid, Spain.

Background: In mammals, inflammation is required for wound repair and tumorigenesis. However, the events that lead to inflammation, particularly in non-healing wounds and cancer, are only partly understood.

Findings: Mast cells, due to their great plasticity, could orchestrate the inflammatory responses inducing the expression of extraembryonic programs of normal and pathological tissue formation.

View Article and Find Full Text PDF

The gestational power of mast cells in the injured tissue.

Inflamm Res

February 2018

Department of Surgery, School of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal s.n., 28040, Madrid, Spain.

The inflammatory response expressed after wound healing would be the recapitulation of systemic extra-embryonic functions, which would focus on the interstitium of the injured tissue. In the injured tissue, mast cells, provided for a great functional heterogeneity, could play the leading role in the re-expression of extra-embryonic functions, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!