Previous studies have developed vascularized tumor spheroid models to demonstrate the impact of intravascular flow on tumor progression and treatment. However, these models have not been widely adopted so the vascularization of tumor spheroids in vitro is generally lower than vascularized tumor tissues in vivo. To improve the tumor vascularization level, a new strategy is introduced to form tumor spheroids by adding fibroblasts (FBs) sequentially to a pre-formed tumor spheroid and demonstrate this method with tumor cell lines from kidney, lung, and ovary cancer. Tumor spheroids made with the new strategy have higher FB densities on the periphery of the tumor spheroid, which tend to enhance vascularization. The vessels close to the tumor spheroid made with this new strategy are more perfusable than the ones made with other methods. Finally, chimeric antigen receptor (CAR) T cells are perfused under continuous flow into vascularized tumor spheroids to demonstrate immunotherapy evaluation using vascularized tumor-on-a-chip model. This new strategy for establishing tumor spheroids leads to increased vascularization in vitro, allowing for the examination of immune, endothelial, stromal, and tumor cell responses under static or flow conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10156888 | PMC |
http://dx.doi.org/10.1002/adhm.202201784 | DOI Listing |
Cancers (Basel)
December 2024
Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany.
Background: Most spheroid models use size measurements as a primary readout parameter; some models extend analysis to T cell infiltration or perform caspase activation assays. However, to our knowledge, T cell motility analysis is not regularly included as an endpoint in imaging studies on cancer spheroids.
Methods: Here, we intend to demonstrate that motility analysis of macrophages and T cells is a valuable functional endpoint for studies on molecular interventions in the tumor microenvironment.
Cancers (Basel)
December 2024
Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
Background/objectives: Despite the introduction of innovative therapeutics, lung cancer is still the leading cause of cancer-related death. For this reason, lung cancer still requires deep characterization to identify cellular and molecular targets that can be used to develop novel therapeutic strategies. Three-dimensional cellular models, including patient-derived organoids (PDOs), represent useful tools to study lung cancer biology and may be employed in the future as predictive tools in therapeutic decisions.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea.
Triple-negative breast cancer (TNBC) remains a challenging subtype due to its aggressive nature and limited treatment options. This study investigated the potential synergistic effects of Korean mistletoe lectin ( L. agglutinin, VCA) and cisplatin on MDA-MB-231 TNBC cells using both 2D and 3D culture models.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Lipid Pathobiochemistry Group, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
Hepatocellular carcinoma () is one of the leading causes of cancer deaths due to its late diagnosis and restricted therapeutic options. Therefore, the search for appropriate alternatives to commonly applied therapies remains an area of high clinical need. Here we investigated the therapeutic potential of the glucosylceramide synthase (GCS) inhibitor Genz-123346 and the cationic amphiphilic drug aripiprazole on the inhibition of Huh7 and Hepa 1-6 hepatocellular cancer cell and tumor microsphere growth.
View Article and Find Full Text PDFCell Death Discov
January 2025
Department of Hepatobiliary Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China.
Hepatocellular carcinoma (HCC) is among the most malignant tumors and seriously threatens human health worldwide, and its incidence rate is increasing annually. USP15 is a member of the ubiquitination-specific protease (USP) family, which can regulate protein ubiquitination, thereby affecting their stability, and is dysregulated in many cancers, but its expression and regulatory mechanism in HCC are unclear. The aims of this study were to explore the role and mechanism of USP15 in regulating HCC cell stemness, proliferation, and lenvatinib resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!