HISMD: A Novel Immune Subtyping System for HNSCC.

J Dent Res

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Published: March 2023

Immune subtyping is an important way to reveal immune heterogeneity, which may contribute to the diversity of the progression and treatment in head and neck squamous cell carcinoma (HNSCC). However, reported immune subtypes mainly focus on levels of immune infiltration and are mostly based on a mono-omics profile. This study aimed to identify a comprehensive immune subtype for HNSCC via multi-omics clustering and build a novel subtype prediction system for clinical application. Data were obtained from The Cancer Genome Atlas database and our independent multicenter cohort. Multi-omics clustering was performed to identify 3 clusters of 499 patients in The Cancer Genome Atlas based on immune-related gene expression and somatic mutations. The immune characteristics and biological features of the obtained clusters were revealed by bioinformatics, and 3 immune subtypes were identified: 1) adaptive immune activation subtype predominantly enriched in T cells, 2) innate immune activation subtype predominantly enriched in macrophages, and 3) immune desert subtype. Subsequently, the clinical implications of each subtype were analyzed per clinical epidemiology. We found that adaptive immune activation showed better survival outcomes and had a similar response to chemotherapy with innate immune activation, whereas immune desert might be relatively resistant to chemotherapy. Moreover, a subtype prediction system was developed by deep learning with whole slide images and named HISMD: HNSCC Immune Subtypes via Multi-omics and Deep Learning. We endowed HISMD with interpretability through image-based key feature extraction. The clinical implications, biological significances, and predictive stability of HISMD were successfully verified by using our independent multicenter cohort data set. In summary, this study revealed the immune heterogeneity of HNSCC and obtained a novel, highly accurate, and interpretable immune subtyping prediction system. For clinical implementation in the future, additional validation and utility studies are warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1177/00220345221134605DOI Listing

Publication Analysis

Top Keywords

immune
17
immune activation
16
immune subtyping
12
immune subtypes
12
prediction system
12
hnscc immune
8
immune heterogeneity
8
multi-omics clustering
8
subtype prediction
8
system clinical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!