Background: Biological sex impacts susceptibility and presentation of cardiovascular disease, which remains the leading cause of death for both sexes. To reduce cardiovascular disease risk, statin drugs are commonly prescribed to reduce circulating cholesterol levels through inhibition of cholesterol synthesis. The effectiveness of statin therapy differs between individuals with a sex bias in the frequency of adverse effects. Limited information is available regarding the mechanisms driving sex-specific responses to hypercholesterolemia or statin treatment.
Methods: Four Core Genotypes mice (XX and XY mice with ovaries and XX and XY mice with testes) on a hypercholesteremic Apoe background were fed a chow diet without or with simvastatin for 8 weeks. Plasma lipid levels were quantified and hepatic differential gene expression was evaluated with RNA-sequencing to identify the independent effects of gonadal and chromosomal sex.
Results: In a hypercholesterolemic state, gonadal sex influenced the expression levels of more than 3000 genes, and chromosomal sex impacted expression of nearly 1400 genes, which were distributed across all autosomes as well as the sex chromosomes. Gonadal sex uniquely influenced the expression of ER stress response genes, whereas chromosomal and gonadal sex influenced fatty acid metabolism gene expression in hypercholesterolemic mice. Sex-specific effects on gene regulation in response to statin treatment included a compensatory upregulation of cholesterol biosynthetic gene expression in mice with XY chromosome complement, regardless of presence of ovaries or testes.
Conclusion: Gonadal and chromosomal sex have independent effects on the hepatic transcriptome to influence different cellular pathways in a hypercholesterolemic environment. Furthermore, chromosomal sex in particular impacted the cellular response to statin treatment. An improved understanding of how gonadal and chromosomal sex influence cellular response to disease conditions and in response to drug treatment is critical to optimize disease management for all individuals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636767 | PMC |
http://dx.doi.org/10.1186/s13293-022-00474-8 | DOI Listing |
Am J Physiol Heart Circ Physiol
January 2025
Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA USA.
The contribution of sex hormones to cardiovascular disease, including arterial stiffness, is established; however, the role of sex chromosome interaction with sex hormones, particularly in women, is lagging. Arterial structural stiffness depends on the intrinsic properties and transmural wall geometry that comprise a network of cells and extracellular matrix (ECM) proteins expressed in a sex-dependent manner. In this study, we used four-core genotype (FCG) mice to determine the relative contribution of sex hormones versus sex chromosomes or their interaction with arterial structural stiffness.
View Article and Find Full Text PDFAndrology
January 2025
Division of Pediatric Endocrinology, All India Institute of Medical Sciences, New Delhi, India.
Background: 46, XY disorders of sex development (DSD) are a group of highly heterogeneous conditions in which the molecular etiology remains unknown in a significant proportion of patients, even with massive parallel sequencing. Clinically significant copy number variants (CNVs) are identified in 20-30% of cases, particularly among those with gonadal dysgenesis (GD) and no molecular diagnosis.
Methods: Fourteen patients with 46, XY DSD due to GD in whom no pathogenic/likely pathogenic variants were found on next-generation sequencing using a targeted panel of 155 genes were screened for clinically significant CNVs using Affymetrix Comparative Genomic Hybridization (CGH).
Am J Med Genet A
January 2025
NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
46,XY differences/disorders of sex development (DSD) are genetically heterogeneous conditions characterized by atypical development of the reproductive system. MYRF, a gene encoding a transcription factor, has been identified as a potential causative gene for DSD and cardiac urogenital syndrome (CUGS). This study aims to delineate the clinical manifestations of patients with 46,XY DSD and MYRF mutations, encompassing both from our cohort and cases reported in the literature.
View Article and Find Full Text PDFInt J Prev Med
December 2024
Gastrointestitional Cancer Research Center, Non-Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran.
Background: The present study is a systematic review and meta-analysis aiming to investigate the effects of alcohol consumption on male sex hormones in humans.
Methods: We conducted searches on PubMed, Scopus, Science Direct, and Google Scholar from June 2020 to June 2022. We included observational studies (cohorts, case-controls, and cross-sectional studies) comparing FSH, LH, or testosterone levels in alcohol consumers versus non-consumers.
IUBMB Life
January 2025
Department of Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!