Background: Hepatocarcinogenesis is driven by necroinflammation or metabolic disorders, and the underlying mechanisms remain largely elusive. We previously found that retinoic acid-inducible gene-I (RIG-I), a sensor for recognizing RNA virus in innate immune cells, is mainly expressed by parenchymal hepatocytes in the liver. However, its roles in hepatocarcinogenesis are unknown, which is intensively investigated in this study.

Methods: DEN-induced necroinflammation-driven hepatocarcinogenesis and STAM NASH-hepatocarcinogenesis were carried out in hepatocyte-specific RIG-I knockout mice. The post-translational modification of RIG-I was determined by mass spectrometry, and specific antibodies against methylated lysine sites and the RIG-I lysine mutant mice were constructed to identify the functions of RIG-I methylation.

Results: We interestingly found that DEN-induced hepatocarcinogenesis was enhanced, while NASH-induced hepatocarcinogenesis was suppressed by hepatocyte-specific RIG-I deficiency. Further, IL-6 decreased RIG-I expression in HCC progenitor cells (HcPCs), which then viciously promoted IL-6 effector signaling and drove HcPCs to fully established HCC. RIG-I expression was increased by HFD, which then enhanced cholesterol synthesis and steatosis, and the in-turn NASH and NASH-induced hepatocarcinogenesis. Mechanistically, RIG-I was constitutively mono-methylated at K18 and K146, and demethylase JMJD4-mediated RIG-I demethylation suppressed IL-6-STAT3 signaling. The constitutive methylated RIG-I associated with AMPKα to inhibit HMGCR phosphorylation, thus promoting HMGCR enzymatic activity and cholesterol synthesis. Clinically, RIG-I was decreased in human hepatic precancerous dysplastic nodules while increased in NAFLD livers, which were in accordance with the data in mouse models.

Conclusions: Decreased RIG-I in HcPCs promotes necroinflammation-induced hepatocarcinogenesis, while increased constitutive methylated RIG-I enhances steatosis and NASH-induced hepatocarcinogenesis. JMJD4-demethylated RIG-I prevents both necroinflammation and NASH-induced hepatocarcinogenesis, which provides mechanistic insight and potential target for preventing HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636772PMC
http://dx.doi.org/10.1186/s13045-022-01381-6DOI Listing

Publication Analysis

Top Keywords

nash-induced hepatocarcinogenesis
16
rig-i
15
hepatocarcinogenesis
9
jmjd4-demethylated rig-i
8
rig-i prevents
8
hepatocyte-specific rig-i
8
decreased rig-i
8
rig-i expression
8
cholesterol synthesis
8
constitutive methylated
8

Similar Publications

Nonalcoholic steatohepatitis (NASH)-induced hepatocellular carcinoma (HCC) and its precursor, nonalcoholic fatty liver disease (NAFLD) are an unmet health issue due to widespread obesity. We assessed copy number changes of genes associated with hepatocarcinogenesis and oxidative pathways at a single-cell level. Eleven patients with NASH-HCC and 11 patients with NAFLD were included.

View Article and Find Full Text PDF

JMJD4-demethylated RIG-I prevents hepatic steatosis and carcinogenesis.

J Hematol Oncol

November 2022

National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, China.

Background: Hepatocarcinogenesis is driven by necroinflammation or metabolic disorders, and the underlying mechanisms remain largely elusive. We previously found that retinoic acid-inducible gene-I (RIG-I), a sensor for recognizing RNA virus in innate immune cells, is mainly expressed by parenchymal hepatocytes in the liver. However, its roles in hepatocarcinogenesis are unknown, which is intensively investigated in this study.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a leading cause of death among cirrhotic patients, for which chemopreventive strategies are lacking. Recently, we developed a simple human cell-based system modeling a clinical prognostic liver signature (PLS) predicting liver disease progression and HCC risk. In a previous study, we applied our cell-based system for drug discovery and identified captopril, an approved angiotensin converting enzyme (ACE) inhibitor, as a candidate compound for HCC chemoprevention.

View Article and Find Full Text PDF

Background & Aims: Hepatocellular carcinoma (HCC) is one of the most fatal and fastest-growing cancers. Recently, nonalcoholic steatohepatitis (NASH) has been recognized as a major catalyst for HCC. Thus, additional research is critically needed to identify mechanisms involved in NASH-induced hepatocarcinogenesis, to advance the prevention and treatment of NASH-driven HCC.

View Article and Find Full Text PDF

Overexpression of Human Syndecan-1 Protects against the Diethylnitrosamine-Induced Hepatocarcinogenesis in Mice.

Cancers (Basel)

March 2021

1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary.

Although syndecan-1 (SDC1) is known to be dysregulated in various cancer types, its implication in tumorigenesis is poorly understood. Its effect may be detrimental or protective depending on the type of cancer. Our previous data suggest that SDC1 is protective against hepatocarcinogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!