Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: To study the association between dynamic iris change and primary angle-closure disease (PACD) with anterior segment optical coherence tomography (AS-OCT) videos and develop an automated deep learning system for angle-closure screening as well as validate its performance.
Methods: A total of 369 AS-OCT videos (19,940 frames)-159 angle-closure subjects and 210 normal controls (two datasets using different AS-OCT capturing devices)-were included. The correlation between iris changes (pupil constriction) and PACD was analyzed based on dynamic clinical parameters (pupil diameter) under the guidance of a senior ophthalmologist. A temporal network was then developed to learn discriminative temporal features from the videos. The datasets were randomly split into training, and test sets and fivefold stratified cross-validation were used to evaluate the performance.
Results: For dynamic clinical parameter evaluation, the mean velocity of pupil constriction (VPC) was significantly lower in angle-closure eyes (0.470 mm/s) than in normal eyes (0.571 mm/s) (P < 0.001), as was the acceleration of pupil constriction (APC, 3.512 mm/s vs. 5.256 mm/s; P < 0.001). For our temporal network, the areas under the curve of the system using AS-OCT images, original AS-OCT videos, and aligned AS-OCT videos were 0.766 (95% CI: 0.610-0.923) vs. 0.820 (95% CI: 0.680-0.961) vs. 0.905 (95% CI: 0.802-1.000) (for Casia dataset) and 0.767 (95% CI: 0.620-0.914) vs. 0.837 (95% CI: 0.713-0.961) vs. 0.919 (95% CI: 0.831-1.000) (for Zeiss dataset).
Conclusions: The results showed, comparatively, that the iris of angle-closure eyes stretches less in response to illumination than in normal eyes. Furthermore, the dynamic feature of iris motion could assist in angle-closure classification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636810 | PMC |
http://dx.doi.org/10.1186/s40662-022-00314-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!