Background: A shortage of donor organs amid high demand for transplantable organs is a worldwide problem, and an increase in organ donation would be welcomed by the global healthcare system. Patients with brain death (BD) are potential organ donors, and early prediction of patients with BD may facilitate the process of organ procurement. Therefore, we developed a model for the early prediction of BD in patients who survived the initial phase of out-of-hospital cardiac arrest (OHCA).

Methods: We retrospectively analyzed data of patients aged < 80 years who experienced OHCA with a return of spontaneous circulation (ROSC) and were admitted to our hospital between 2006 and 2018. We categorized patients into either a non-BD or BD group. Demographic and laboratory data on ED admission were used for stepwise logistic regression analysis. Prediction scores of BD after OHCA were based on β-coefficients of prognostic factors identified in the multivariable logistic model.

Results: Overall, 419 OHCA patients with ROSC were admitted to our hospital during the study period. Seventy-seven patients showed BD (18.3%). Age and etiology of OHCA were significantly different between the groups. Logistic regression analysis confirmed that age, low-flow time, pH, and etiology were independent predictors of BD. The area under the receiver operating characteristic curve for this model was 0.831 (95% confidence interval, 0.786-0.876).

Conclusions: We developed and internally validated a new prediction model for BD after OHCA, which could aid in the early identification of potential organ donors for early donor organ procurement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636638PMC
http://dx.doi.org/10.1186/s12873-022-00734-1DOI Listing

Publication Analysis

Top Keywords

early prediction
12
prediction model
8
brain death
8
out-of-hospital cardiac
8
cardiac arrest
8
patients
8
potential organ
8
organ donors
8
donors early
8
prediction patients
8

Similar Publications

Objective: This study investigates the relationship between the albumin-to-creatinine ratio and diabetic retinopathy (DR) in US adults using NHANES data from 2009 to 2016. This study assesses the predictive efficacy of the urinary serum albumin-to-creatinine ratio (UACR/SACR Ratio) against traditional biomarkers such as the serum albumin-to-creatinine ratio (SACR) and urinary albumin-to-creatinine ratio (UACR) for evaluating DR risk. Additionally, the study explores the potential of these biomarkers, both individually and in combination with HbA1c, for early detection and risk stratification of DR.

View Article and Find Full Text PDF

Introduction: Therapeutic drug monitoring (TDM) in inflammatory rheumatic diseases (RMDs) is gaining interest. However, there are unresolved questions about the best practices for implementing TDM effectively in clinical settings.

Objective: The primary objective of this study was to evaluate whether early TDM of adalimumab predicts drug survival at 52 weeks in patients with RMDs.

View Article and Find Full Text PDF

Objectives: To investigate the clinical and laboratory features of Sjögren's syndrome-associated autoimmune liver disease (SS-ALD) patients and identify potential risk and prognostic factors.

Methods: SS patients with or without ALD, who visited Tongji Hospital between the years 2011 and 2021 and met the 2012 American College of Rheumatology (ACR) classification criteria for Sjögren's syndrome, were retrospectively enrolled. The clinical and laboratory data of the enrolled patients, including autoimmune antibodies, were collected and analyzed with principal component analysis, correlation analysis, LASSO regression, and Cox regression.

View Article and Find Full Text PDF

Reciprocal relationships between adolescent mental health difficulties and alcohol consumption.

Eur Child Adolesc Psychiatry

January 2025

School of Psychology, Centre for Innovation in Mental Health, University of Southampton, University Road, Southampton, SO17 1BJ, UK.

The directionality of the relationship between adolescent alcohol consumption and mental health difficulties remains poorly understood. This study investigates the longitudinal relationship between alcohol use frequency, internalizing and externalizing symptoms from the ages of 11 to 17. We conducted a random-intercept cross-lagged panel model across three timepoints (ages: 11yrs, 14yrs, 17yrs; 50.

View Article and Find Full Text PDF

Development and Validation of KCPREDICT: A Deep Learning Model for Early Detection of Coronary Artery Lesions in Kawasaki Disease Patients.

Pediatr Cardiol

January 2025

Department of Infectious Disease, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No. 1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China.

Kawasaki disease (KD) is a febrile vasculitis disorder, with coronary artery lesions (CALs) being the most severe complication. Early detection of CALs is challenging due to limitations in echocardiographic equipment (UCG). This study aimed to develop and validate an artificial intelligence algorithm to distinguish CALs in KD patients and support diagnostic decision-making at admission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!