Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Spatial heterogeneity of climatic and edaphic gradients can substantially affect the grassland productivity function. However, few studies have tested the importance of species richness and evenness on regulating grassland productivity across spatial-scale climatic and edaphic changes. This study examines the complex mechanisms by which species richness and evenness regulate productivity in alpine meadow and steppe. We used field survey data to explore above-ground productivity formation and sensitivity to spatial-scale climatic and edaphic response of alpine grassland based on species richness and evenness. Results showed that the growing season solar radiation was the main driving factor of above-ground biomass and was strongly negatively correlated with above-ground biomass. Furthermore, compared with alpine steppe, above-ground biomass in alpine meadow was more responsive to climatic variables, but less responsive to soil variables. Unexpectedly, we found that the regulation patterns of species richness and evenness on above-ground biomass were different in both habitats by a structural equation model analysis. Our study demonstrated that species evenness and richness were both important in co-regulating above-ground biomass in alpine meadow, whereas species richness mattered more than species evenness in regulating above-ground biomass in alpine steppe. Our results offer further support for species richness and evenness co-regulating grassland productivity across spatial-scale climatic and edaphic gradients, which helps maintain the benefits of plant diversity and alpine grassland ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-022-05279-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!