Overexpression of transmembrane TNFα in brain endothelial cells induces schizophrenia-relevant behaviors.

Mol Psychiatry

Stanley Brain Research Laboratory, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, 20850, USA.

Published: February 2023

Upregulation of genes and coexpression networks related to immune function and inflammation have been repeatedly reported in the brain of individuals with schizophrenia. However, a causal relationship between the abnormal immune/inflammation-related gene expression and schizophrenia has not been determined. We conducted co-expression networks using publicly available RNA-seq data from prefrontal cortex (PFC) and hippocampus (HP) of 64 individuals with schizophrenia and 64 unaffected controls from the SMRI tissue collections. We identified proinflammatory cytokine, transmembrane tumor necrosis factor-α (tmTNFα), as a potential regulator in the module of co-expressed genes that we find related to the immune/inflammation response in endothelial cells (ECs) and/or microglia of the brain of individuals with schizophrenia. The immune/inflammation-related modules associated with schizophrenia and the TNF signaling pathway that regulate the network were replicated in an independent cohort of brain samples from 68 individuals with schizophrenia and 135 unaffected controls. To investigate the association between the overexpression of tmTNFα in brain ECs and schizophrenia-like behaviors, we induced short-term overexpression of the uncleavable form of (uc)-tmTNFα in ECs of mouse brain for 7 weeks. We found schizophrenia-relevant behavioral deficits in these mice, including cognitive impairment, abnormal sensorimotor gating, and sensitization to methamphetamine (METH) induced locomotor activity and METH-induced neurotransmitter levels. These uc-tmTNFα effects were mediated by TNF receptor2 (TNFR2) and induced activation of TNFR2 signaling in astrocytes and neurons. A neuronal module including neurotransmitter signaling pathways was down-regulated in the brain of mice by the short-term overexpression of the gene, while an immune/inflammation-related module was up-regulated in the brain of mice after long-term expression of 22 weeks. Our results indicate that tmTNFα may play a direct role in regulating neurotransmitter signaling pathways that contribute to the clinical features of schizophrenia.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-022-01846-7DOI Listing

Publication Analysis

Top Keywords

individuals schizophrenia
16
brain
8
endothelial cells
8
brain individuals
8
unaffected controls
8
short-term overexpression
8
neurotransmitter signaling
8
signaling pathways
8
brain mice
8
schizophrenia
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!