An active domain SA-2 derived from cystatin-SA, and its antifungal activity.

Amino Acids

School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, Jiangsu, People's Republic of China.

Published: January 2023

Infections induced by fungi, especially the drug-resistant fungi, are difficult clinical problems. Conventional antifungal treatment is effective but due to resistance, treatment failure, and treatment-related toxicity, there is a need for new antifungal drugs. In this study, SA-2 (YYRRLLRVLRRRW) was derived from Cystatin-SA, a saliva protein with a molecular weight of 14 kDa. Meanwhile, the structure-activity of SA-2 and its mutants was also studied. We detected the antimicrobial activity and cytotoxicity of SA-2 and found that SA-2 had a low cytotoxicity toward mammalian cells but a good inhibitory effect on Candida albicans (C. albicans) and Cryptococcus neoformans (C. neoformans), with MIC values of 16-64 μg/mL and 8-32 μg/mL, respectively. Interestingly, SA-2 effectively killed fluconazole-resistant C. neoformans and C. albicans within 12 h. This antifungal activity against fluconazole-resistant fungi was comparable to that of amphotericin B. In addition, the C. neoformans-infected mice model was established to evaluate the anti-infective activity of SA-2 in vivo. Results showed that SA-2 significantly reduced the counts of fungi in lung and brain tissues to protect fluconazole-resistant C. neoformans-infected mice from death without changing mice body weights. Moreover, the dramatically increased pro-inflammatory cytokines TNF-α, IL-6 and IL-1β induced by intranasal infection of C. neoformans could be obviously declined due to the treatment of SA-2, which may be attributed to the elimination of C. neoformans in time in the infected tissue. For the mode of actions underlying SA-2 against C. neoformans, we found that the cationic peptide SA-2 could adhere to the negatively charged fungal cell membrane to increase the surface potential of C. neoformans in a dose-dependent manner, and finally disrupted the integrity of fungal cell membrane, reflecting as a 60% positive rate of propidium iodide uptake of C. neoformans cells after SA-2 (4 × MIC) treatment. Our study indicated that SA-2 has the potential to develop as a new therapeutic agent against infection induced by drug-resistant fungi.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00726-022-03207-8DOI Listing

Publication Analysis

Top Keywords

sa-2
13
derived cystatin-sa
8
antifungal activity
8
drug-resistant fungi
8
neoformans
8
neoformans-infected mice
8
fungal cell
8
cell membrane
8
fungi
5
active domain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!