Localized stimulation of the inner retinal neurons for high-acuity prosthetic vision requires small pixels and minimal crosstalk from the neighboring electrodes. Local return electrodes within each pixel limit the crosstalk, but they over-constrain the electric field, thus precluding the efficient stimulation with subretinal pixels smaller than 55 μm. Here we demonstrate a high-resolution prosthetic vision based on a novel design of a photovoltaic array, where field confinement is achieved dynamically, leveraging the adjustable conductivity of the diodes under forward bias to turn the designated pixels into transient returns. We validated the computational modeling of the field confinement in such an optically-controlled circuit by in-vitro and in-vivo measurements. Most importantly, using this strategy, we demonstrated that the grating acuity with 40 μm pixels matches the pixel pitch, while with 20 μm pixels, it reaches the 28 μm limit of the natural visual resolution in rats. This method enables customized field shaping based on individual retinal thickness and distance from the implant, paving the way to higher acuity of prosthetic vision in atrophic macular degeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636145PMC
http://dx.doi.org/10.1038/s41467-022-34353-yDOI Listing

Publication Analysis

Top Keywords

prosthetic vision
12
resolution rats
8
field confinement
8
pixels
5
electronic photoreceptors
4
photoreceptors enable
4
prosthetic
4
enable prosthetic
4
prosthetic visual
4
visual acuity
4

Similar Publications

In this work, a cost-effective, scalable pneumatic silicone actuator array is introduced, designed to dynamically conform to the user's skin and thereby alleviate localised pressure within a prosthetic socket. The appropriate constitutive models for developing a finite element representation of these actuators are systematically identified, parametrised, and validated. Employing this computational framework, the surface deformation fields induced by 270 variations in soft actuator array design parameters under realistic load conditions are examined, achieving predictive accuracies within 70 µm.

View Article and Find Full Text PDF

[Research progress in optogenetic therapy for retinitis pigmentosa].

Zhonghua Yan Ke Za Zhi

January 2025

Shenzhen Eye Hospital, Jinan University, Shenzhen Institute of Eye Disease Control, Shenzhen518040, China.

Retinitis pigmentosa (RP) is a group of inherited retinal diseases characterized by progressive loss of photoreceptor cells and retinal pigment epithelium function. Its treatment has long been a focus and challenge in ophthalmic research. Despite advances in therapies such as stem cell transplantation, gene therapy, and retinal prosthetic implants, many difficulties remain.

View Article and Find Full Text PDF

The smaller-incision new-generation implantable miniature telescope (SING IMT) represents an advancement over the previous model, WA-IMT, serving as a unilateral prosthetic device for patients with late-stage age-related macular degeneration (AMD). This study aims to report changes in multifocal electroretinography (mfERG) 6 months post-SING IMT implantation. In this case series, we prospectively evaluated a cohort of phakic patients with late-stage AMD who underwent SING IMT implantation at the Ophthalmology Unit, University of Bari Aldo Moro, Italy.

View Article and Find Full Text PDF

Patient-specific implant placement in the case of pelvic tumour resection is usually a complex procedure, where the planned optimal position of the prosthesis may differ from the final location. This discrepancy arises from incorrect or differently executed bone resection and improper final positioning of the prosthesis. In order to overcome such mismatch, a navigation solution is presented based on an augmented reality application for HoloLens 2 to assist the entire procedure.

View Article and Find Full Text PDF

Deaf futurity: designing and innovating hearing aids.

Med Humanit

January 2025

History, University of Delaware, Newark, Delaware, USA

One of the tenets of a posthuman vision is the eradication of disability through technology. Within this site of 'no future', as Alison Kafer describes, the disabled body is merged with artificial intelligence technology or transformed into a prosthetic superhuman. These imaginative possibilities are materialised in a future-oriented mindset in contemporary technological innovation, including hearing aids and other devices-such as vibrating vests to 'feel sounds' or sign language gloves, what design critic Liz Jackson defines as 'disability dongles'-designed to bypass deafness that simultaneously provide a 'cure' and create a 'post-deaf reality'.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!