RNA-based oligonucleotide therapeutics are revolutionizing drug development for disease treatment. This class of therapeutics differs from small molecules and protein therapeutics in various ways, including both its mechanism of action and clinical pharmacology characteristics. These unique characteristics, along with evolving oligonucleotide-associated conjugates allowing specific tissue targeting, have fueled interest in the evaluation of RNA-based oligonucleotide therapeutics in a rapidly increasing number of therapeutic areas. With these unique attributes as well as growing therapeutic potential, oligonucleotide therapeutics have generated significant interest from a clinical pharmacology perspective. The Food and Drug Administration (FDA) previously published results of a survey that summarized clinical pharmacology studies supporting oligonucleotide therapies approved and in development between 2012 and 2018. Since the first approval of a small interfering RNA (siRNA) therapeutic in 2018, this class of modalities has gained momentum in various therapeutic areas. Hence, a comprehensive examination of the clinical pharmacology of FDA-approved siRNA therapeutics would benefit the path forward for many stakeholders. Thus, in this current review, we thoroughly examine and summarize clinical pharmacology data of the FDA-approved siRNA therapeutics approved from 2018 (year of first approval) to 2022, aimed at facilitating future drug development and regulatory decision making. SIGNIFICANCE STATEMENT: This review systematically summarizes the clinical pharmacology information of Food and Drug Administration (FDA)-approved small interfering RNAs (siRNA) therapeutics. SiRNAs are revolutionizing the drug development field. Unique clinical pharmacology characteristics represent a differentiating factor for this class of therapeutics. The FDArecently published a draft guidance for clinical pharmacology considerations for developing oligonucleotide therapeutics. As clinical development of this class of therapeutics is fast growing, this review will inform discovery and clinical-stage evaluation of upcoming siRNA-associated drug candidates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900864 | PMC |
http://dx.doi.org/10.1124/dmd.122.001107 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Cancer Biology & Genetics Program, Sloan Kettering Institute, New York, NY 10065.
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.
View Article and Find Full Text PDFJ Neurosurg
January 2025
13Department of Neurosurgery, Shimane Prefectural Central Hospital, Shimane, Japan.
Objective: Aneurysmal subarachnoid hemorrhage (SAH) is associated with high morbidity and mortality rates. In particular, functional outcomes of SAH caused by large or giant (≥ 10 mm) ruptured intracranial aneurysms are worsened by high procedure-related complication rates. However, studies describing the risk factors for poor functional outcomes specific to ruptured large/giant aneurysms are sparse.
View Article and Find Full Text PDFJ Neurochem
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Opthalmology, Chongqing Hechuan District People's Hospital, Chongqing, China.
Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.
Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!