Guanine (Gua), among purines, is a preferred oxidation/nitration target because of its low one-electron redox potential. The reactive oxygen/nitrogen species peroxynitrite (ONOO), produced in vivo by the reaction between nitric oxide (NO) and superoxide radical (O), is responsible for several oxidative modifications in biomolecules, including nitration, nitrosation, oxidation, and peroxidation. In particular, the nitration of Gua, although detected, as well as its reaction kinetics have been seldom investigated. Thus, we studied the concentration- and temperature-dependent formation of 8-nitroguanine (8-NitroGua) in phosphate buffer (pH 7.40) using stopped-flow spectrophotometry. Traces showed a biexponential behavior, with best-fit rate constants: k = 4.4 s and k = 0.41 s (30 °C, 400 μM both Gua and ONOO). k increased linearly with the concentration of both reactants whereas k was concentration-independent. Linear regression analysis of k as a function of Gua and ONOO concentration yielded values of 2.5-6.3 × 10 Ms and 1.5-3.5 s for the second-order (slope) and first-order (ordinate) rate constants, respectively (30 °C). Since ONOO is a short-lived species, its decay kinetics was also taken into account for this analysis. The 8-NitroGua product was stable for at least 4 h, so no spontaneous denitration was observed. Stopped-flow assays using antioxidants and free-radical scavengers suggested a mixed direct/indirect reaction mechanism for 8-NitroGua formation. Gua nitration by ONOO was also observed in the presence of physiologically relevant CO concentrations. The reaction product identity, its yield (∼4.2%, with 400 μM ONOO and 200 μM Gua), and the reaction mechanism were unequivocally determined by HPLC-MS/MS experiments. In conclusion, 8-NitroGua production at physiologic pH reached significant levels in a few hundred milliseconds, suggesting that the process might be kinetically relevant in vivo and can likely cause permanent nitrative damage to DNA bases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2022.10.317 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
CPRAC Research Center, Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, Bou-Ismail CP, Tipaza, 42004, Algeria.
The aim of the present work is to investigate the photocatalytic degradation of propyl paraben (propyl para-hydroxybenzoate, PrP) using CuO-ZnO-NPs photocatalyst followed by the identification of the oxidation by-products. The CuO-ZnO-NPs material, synthesized using a green chemistry approach, was used as a photocatalyst for the removal of PrP. The nanoparticles were characterized by XRD, XRF, diffuse reflectance spectroscopy, ATG/DTG, FTIR, SEM-EDX, BET and FRX techniques.
View Article and Find Full Text PDFBMC Biotechnol
January 2025
School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China.
Background: In this study, thermophilic pectinase-producing strains were isolated. Among all the isolates, strain No. 4 was identified as Aspergillus fumigatus BT-4 based on its morphology and 18 S rDNA analysis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest, Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:
This study investigates the mixing effects on the enzymatic hydrolysis of microcrystalline cellulose (MCC) and dilute-acid pretreated corncob substrates under high-solid conditions. Enzymatic hydrolysis experiments were conducted to assess cellulose conversion rates under varying mixing conditions (0, 50, 150, and 250 rpm) and solids loadings (5 %, 15 %, 25 %, and 35 %, w/v), and distinct physicochemical properties of the substrates were characterized. Additionally, the role of mixing conditions and solid loadings on cellulose hydrolysis kinetics and enzyme adsorption on both substrates and lignin were elucidated.
View Article and Find Full Text PDFUltrason Sonochem
January 2025
Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan. Electronic address:
Chlorogenic acid, a well-known antioxidant, has potential applications in health care, food, and cosmetic sectors. However, its low solubility hinders its application at the industrial scale. The primary goal of the present study was to increase the lipophilic property of chlorogenic acid through esterification using an ultrasonication approach and Novozym® 435 as the catalyst.
View Article and Find Full Text PDFBreast
December 2024
Department of Clinical Research and Management, Graduate School of Medicine, University of Ryukyus, Japan; Department of Clinical Pharmacology, Faculty of Medicine, University of the Ryukyus, Japan. Electronic address:
Standard trastuzumab therapy can reduce the risk of early recurrence of HER2-positive breast cancer. However, trastuzumab-induced cardiac dysfunction may force the discontinuation of adjuvant trastuzumab therapy. Incidentally, there are still unclear whether or not trastuzumab treatment should be continued in the setting of reduced cardiac function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!