Current treatment strategies for autoimmune diseases may not sufficiently control aberrant metabolism in B-cells. To address this concern, we investigated a biguanide derivative, IM156, as a potential regulator for B-cell metabolism in vitro and in vivo on overactive B-cells stimulated by the pro-inflammatory receptor TLR-9 agonist CpG oligodeoxynucleotide, a mimic of viral/bacterial DNA. Using RNA sequencing, we analyzed the B-cell transcriptome expression, identifying the major molecular pathways affected by IM156 in vivo. We also evaluated the anti-inflammatory effects of IM156 in lupus-prone NZB/W F1 mice. CD19B-cells exhibited higher mitochondrial mass and mitochondrial membrane potential compared to T-cells and were more susceptible to IM156-mediated oxidative phosphorylation inhibition. In vivo, IM156 inhibited mitochondrial oxidative phosphorylation, cell cycle progression, plasmablast differentiation, and activation marker levels in CpG oligodeoxynucleotide-stimulated mouse spleen B-cells. Interestingly, IM156 treatment significantly increased overall survival, reduced glomerulonephritis and inhibited B-cell activation in the NZB/W F1 mice. Thus, our data indicated that IM156 suppressed the mitochondrial membrane potentials of activated B-cells in mice, contributing to the mitigation of lupus activity. Hence, IM156 may represent a therapeutic alternative for autoimmune disease mediated by B-cell hyperactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.kint.2022.09.031DOI Listing

Publication Analysis

Top Keywords

oxidative phosphorylation
12
mitochondrial membrane
12
im156
8
b-cell activation
8
membrane potential
8
nzb/w mice
8
b-cell
5
mitochondrial
5
phosphorylation inhibitor
4
inhibitor im156
4

Similar Publications

Pro-inflammatory macrophage activation is a hallmark example of how mitochondria serve as signaling organelles. Oxidative phosphorylation sharply decreases upon classical macrophage activation, as mitochondria are thought to shift from ATP production towards accumulating signals that amplify effector function. However, evidence is conflicting regarding whether this collapse in respiration is essential or dispensable.

View Article and Find Full Text PDF

CDKN2A is a tumor suppressor located in chromosome 9p21 and frequently lost in Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). How CDKN2A and other 9p21 gene co-deletions affect EAC evolution remains understudied. We explored the effects of 9p21 loss in EACs and cancer progressor and non-progressor BEs with matched genomic, transcriptomic and clinical data.

View Article and Find Full Text PDF

The switch from oxidative phosphorylation to glycolysis is crucial for microglial activation. Recent studies highlight that histone lactylation promotes macrophage homeostatic gene expression via transcriptional regulation, but its role in microglia activation in Parkinson's disease (PD) remains unclear. Here, we demonstrated that inhibiting glycolysis with 2-deoxy-D-glucose alleviates microgliosis, neuroinflammation and dopaminergic neurons damage by reducing lactate accumulation in PD mice.

View Article and Find Full Text PDF

The extensive application of graphene nanosheets (GNSs) has raised concerns over risks to sensitive species in the aquatic environment. The humic acid (HA) corona is traditionally considered to reduce GNSs toxicity. Here, we evaluate the effect of sorbed HA (GNSs-HA) on the toxicity of GNSs to Gram positive Bacillus tropicus.

View Article and Find Full Text PDF

Chronic itch which is primarily associated with dermatologic, systemic, or metabolic disorders is often refractory to most current antipruritic medications, thus highlighting the need for improved therapies. Oxidative damage is a novel determinant of spinal pruriceptive sensitization and synaptic plasticity. The resolution of oxidative insult by molecular hydrogen has been manifested.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!