A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Developmental biology-inspired tissue engineering by combining organoids and 3D bioprinting. | LitMetric

Developmental biology-inspired tissue engineering by combining organoids and 3D bioprinting.

Curr Opin Biotechnol

Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India. Electronic address:

Published: December 2022

Very few tissue-engineered constructs could achieve the desired results in human clinical trials. The main reason is their inability to recapitulate the cellular conformation, biological, and mechanical functions of the native tissue. Here, we highlight the future avenues of tissue regeneration combining developmental biology, organoids, and 3D bioprinting. A deep mechanistic insight into the embryonic level and recapitulating them would be the most promising strategy in next-generation tissue engineering. Rather than focusing on the adult tissue features, the latest developmental re-engineering strategies replicate the developmental phases of tissue development. Integrating developmental re-engineering with 3D bioprinting can regulate several signaling pathways. This would further help to fabricate mini-organ constructs for transplantation or in vitro screening of drugs using an organ-on-a-chip platform.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.copbio.2022.102832DOI Listing

Publication Analysis

Top Keywords

tissue engineering
8
organoids bioprinting
8
developmental re-engineering
8
tissue
6
developmental
5
developmental biology-inspired
4
biology-inspired tissue
4
engineering combining
4
combining organoids
4
bioprinting tissue-engineered
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!