Effects of level running-induced fatigue on running kinematics: A systematic review and meta-analysis.

Gait Posture

Biomedical Signals and Systems, University of Twente, Enschede, the Netherlands; Rehabilitation Technology, Roessingh Research and Development, Enschede, the Netherlands.

Published: January 2023

Background: Runners have a high risk of acquiring a running-related injury. Understanding the mechanisms of impact force attenuation into the body when a runner fatigues might give insight into the role of running kinematics on the aetiology of overuse injuries.

Research Questions: How do running kinematics change due to running-induced fatigue? And what is the influence of experience level on changes in running kinematics due to fatigue?

Methods: Three electronic databases were searched: PubMed, Web of Science, and Scopus. This resulted in 33 articles and 19 kinematic quantities being included in this review. A quality assessment was performed on all included articles and meta-analyses were performed for 18 kinematic quantities.

Results And Significance: Main findings included an increase in peak acceleration at the tibia and a decrease in leg stiffness after a fatiguing protocol. Additionally, level running-induced fatigue increased knee flexion at initial contact and maximum knee flexion during swing. An increase in vertical centre of mass displacement was found in novice but not in experienced runners with fatigue. Overall, runners changed their gait pattern due to fatigue by moving to a smoother gait pattern (i.e. more knee flexion at initial contact and during swing, decreased leg stiffness). However, these changes were not sufficient to prevent an increase in peak accelerations at the tibia after a fatigue protocol. Large inter-individual differences in responses to fatigue were reported. Hence, it is recommended to investigate changes in running kinematics as a result of fatigue on a subject-specific level since group-level analysis might mask individual responses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gaitpost.2022.09.089DOI Listing

Publication Analysis

Top Keywords

running kinematics
20
knee flexion
12
level running-induced
8
running-induced fatigue
8
changes running
8
increase peak
8
leg stiffness
8
flexion initial
8
initial contact
8
gait pattern
8

Similar Publications

Measuring lower extremity impact acceleration is a common strategy to identify runners with increased injury risk. However, existing axial peak tibial acceleration (PTA) thresholds for determining high-impact runners typically rely on small samples or fixed running speeds. This study aimed to describe the distribution of axial PTA among runners at their preferred running speed, determine an appropriate adjustment for investigating impact magnitude at different speeds, and compare biomechanics between runners classified by impact magnitude.

View Article and Find Full Text PDF

Frictional adhesion of geckos predicts maximum running performance in nature.

J Exp Biol

January 2025

Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.

Despite the myriad studies examining the diversity and mechanisms of gecko adhesion in the lab, we have a poor understanding of how this translates to locomotion in nature. It has long been assumed that greater adhesive strength should translate to superior performance in nature. Using 13 individuals of Bradfield's Namib day gecko (Rhoptropus bradfieldi) in Namibia, I tested the hypothesis that maximum running performance in nature (speed and acceleration) is driven by maximum frictional adhesive strength.

View Article and Find Full Text PDF

Increasing cadence is an intervention to reduce injury risk for adolescent long-distance runners. It is unknown how adolescents respond biomechanically when running with a higher than preferred cadence. We examined the influence of increasing cadence on peak joint angles, moments and powers, and ground reaction forces in long-distance runners.

View Article and Find Full Text PDF

The purpose of this study was to assess quantitatively the effects of compression garments (CGs) on fatigue behaviour during sport activities such as running, which are the subject of a series of qualitative and physiological studies. A quantitative biomechanical analysis of the effects of CGs could assist coaches and athletes to adopt these types of performance enhancement garments. In this research, kinematic changes are measured using 2D phase portraits to study the influence of CGs on fatigue behaviour.

View Article and Find Full Text PDF

Foot strike patterns influence vertical loading rates during running. Running retraining interventions often include switching to a new foot strike pattern. Sudden changes in the foot strike pattern may be uncomfortable and may lead to higher step-to-step variability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!