A DNA fragment containing CpG motifs (CpG ODN) is one of the potent immunopotentiators used to improve vaccine efficacy. It can enhance a protective immunity by stimulating both innate and adaptive immune responses. In this study, we designed and constructed a recombinant plasmid carrying the combined CpG ODN to generate an immunopotentiator for boosting the immunogenicity of porcine circovirus type 2 (PCV2) virus-like particles (VLPs). The capsid protein of PCV2b was expressed in insect cells and purified by affinity chromatography. The purified capsid protein was incubated with the CpG ODN in the reaction that allowed VLPs formation and encapsidation of the CpG ODN to occur simultaneously. Morphology of the reassembled VLPs was similar to the PCV2 virions as observed using an electron microscope. When the CpG ODN-encapcidated VLPs was treated with DNase I, the VLPs could protect the packaged CpG ODN from the enzyme digestion. Moreover, we immunized mice subcutaneously with VLPs, CpG ODN-loaded VLPs, or phosphate buffer saline for three times at two-week intervals. The results showed that the CpG ODN-loaded VLPs could elicit significantly higher levels of PCV2-specific neutralizing antibodies and interferon gamma (IFN-γ) expression in the immunized mice compared to those conferred by the VLPs alone. Conclusively, we have proved that the CpG ODN incorporated in VLPs can serve as a potent immunopotentiator for PCV2 vaccine development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2022.109583 | DOI Listing |
Trans R Soc Trop Med Hyg
January 2025
Conse jo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), CP3400 Corrientes, Argentina.
Background: The WHO states that antivenom is the only safe and effective treatment to neutralize snake venom. Snakebite antivenom typically involves horse hyperimmunization with crude venom and Freund's adjuvant.
Methods: In the current work, we analyzed the ascorbyl palmitate liquid crystal structure with snake protein or PLA2, the carrier charge capacity, and we evaluated the immune response induced by the enzyme P9a(Cdt-PLA2) formulated in a nanostructure using CpG-ODN, determining the titer of IgG antibodies.
Allergy Asthma Proc
January 2025
From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C.
Allergen immunotherapy (AIT) is currently the most effective immunologic form of treatment for patients with atopic allergic diseases commonly used by allergist/immunologists to reduce allergic symptoms by gradually desensitizing the immune system to specific allergens. Currently, the primary mechanism of AIT emphasizes the crucial role of immune regulation, which involves a shift from a T-helper type 2 (Th2) cell response, which promotes allergy, to a T-regulatory (Treg) cell population, which inhibits the allergic inflammatory response through the production of immunosuppressive cytokines interleukin 10 and transforming growth factor β, which play pivotal roles in suppressing the allergic reaction. In a series of previous in vitro and in vivo experiments, we have demonstrated the capacity of synthetic methylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotide (ODN) moieties as well as methylated genomic DNA ODN motifs from Bifidobacterium longum subspecies infantis to activate Treg cell differentiation in contrast to the unmethylated ODN moiety, which promotes proinflammatory responses driven by Th17-mediated responses.
View Article and Find Full Text PDFAdv Mater
December 2024
State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
B lymphocytes have emerged as an important immune-regulating target. Inoculation with tumor cell membrane-derived vaccines is a promising strategy to activate B cells, yet their efficiency is limited due to lack of costimulatory molecules. To amplify B cell responses against tumor, herein, a spatiotemporally-synchronized antigen-adjuvant integrated nanovaccine, termed as CM-CpG-aCD40, is constructed by conjugating the immune stimulative CpG oligonucleotide and the anti-CD40 antibody (aCD40) onto the membrane vesicles derived from triple negative breast cancer cells.
View Article and Find Full Text PDFBiol Pharm Bull
December 2024
Department of Radiation Biosciences, Graduate School of Pharmaceutical Sciences, Tokyo University of Science.
Excessive inflammatory responses to viral infections, known as cytokine storms, are caused by overactivation of endolysosomal Toll-like receptors (TLRs) (TLR3, TLR7, TLR8, and TLR9) and can be lethal, but no specific treatment is available. Some quinoline derivatives with antiviral activity were tried during the recent coronavirus disease 2019 (COVID-19) pandemic, but showed serious toxicity, and their efficacy for treating viral cytokine storms was not established. Here, in order to discover a low-toxicity quinoline derivative as a candidate for controlling virally induced inflammation, we synthesized a series of derivatives of amodiaquine (ADQ), a quinoline approved as an antimalarial, and tested their effects on TLRs-mediated production of inflammatory cytokines and cell viability in vitro.
View Article and Find Full Text PDFInt J Pharm
December 2024
Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India. Electronic address:
Leishmaniasis is amongst one of the most neglected tropical disease, caused by an intracellular protozoan of genus Leishmania. Currently, the most promising strategy to combat leishmaniasis, relies on chemotherapy but the toxicity and increasing resistance of the standard drugs, presses the demand for new alternatives. Immunization is arguably the best strategy for cure because an individual once infected becomes immune to the disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!