We study the temperature-dependent diffusion of many types of metal and semimetal ions in soda-lime glass using thermal relaxation ion spectroscopy, a technique that provides an electrical readout of thermally activated diffusion of charge carriers driven by built-in concentration gradients and electric fields. We measure the temperature of the onset of the motion, relevant to the long term storage of radioactive elements. We demonstrate the unique behavior of silver in soda-lime glass, enabling a thermal battery with rapid discharge of stored energy above a threshold temperature. We show that the Meyer-Neldel rule applies when comparisons of temperature-dependent diffusion rates are made between related measurements on one sample or between the same measurements on related samples. The results support a thermodynamic interpretation of the Meyer-Neldel rule as an enthalpy-entropy correlation where the Meyer-Neldel temperature (T_{MN}) is the temperature that enables liquidlike, barrier-free motion of the ions, with an upper limit set by the melting point of the host medium. This interpretation explains the observed reduction in T_{MN} by built-in electric fields in depletion layers and why the upper limit for T_{MN} for all ions is set by the glass transition temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.129.175901 | DOI Listing |
Chem Mater
December 2024
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Solid polymer electrolytes have yet to achieve the desired ionic conductivity (>1 mS/cm) near room temperature required for many applications. This target implies the need to reduce the effective energy barriers for ion transport in polymer electrolytes to around 20 kJ/mol. In this work, we combine information extracted from existing experimental results with theoretical calculations to provide insights into ion transport in single-ion conductors (SICs) with a focus on lithium ion SICs.
View Article and Find Full Text PDFMaterials (Basel)
July 2024
Faculty of Engineering and Natural Sciences, Department of Energy Systems Engineering, Ankara Yıldırım Beyazıt University, 06010 Ankara, Turkey.
Amorphous ZrO thin films with increasing Mg content were deposited on quartz substrates, by dip coating method. The films are transparent in the visible domain and absorbent in UV, with an optical band gap that decreases with the increase of Mg content, from 5.42 eV to 4.
View Article and Find Full Text PDFIn this research work, we have examined the influence of silver halide doping on the dielectric dispersion and AC conduction of elemental selenium. The in-depth investigation shows that when the dopant silver halides are incorporated, there are noticeable changes in the parent selenium's dielectric constant ('), dielectric loss (''), and AC conductivity ( ). When we frame the discussion of the obtained results with the relevant transport models, we found that in pure selenium and Se(AgI), conduction is primarily due to polaron hopping and follows the correlated barrier hopping (CBH) model.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2024
University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China.
Ion transport in crystalline solids is an essential process for many electrochemical energy converters such as solid-state batteries and fuel cells. Empirical data have shown that ion transport in crystal lattices obeys the Meyer-Neldel Rule (MNR). For similar, closely related materials, when the material properties are changed by doping or by strain, the measured ionic conductivities showing different activation energies intersect on the Arrhenius plot, at an isokinetic temperature.
View Article and Find Full Text PDFNanomaterials (Basel)
July 2023
School of Information Science, Hallym University, Chuncheon 24252, Republic of Korea.
Understanding the density of state (DOS) distribution in solution-processed indium-zinc-oxide (IZO) thin-film transistors (TFTs) is crucial for addressing electrical instability. This paper presents quantitative calculations of the acceptor-like state distribution of solution-processed IZO TFTs using thermal energy analysis. To extract the acceptor-like state distribution, the electrical characteristics of IZO TFTs with various In molarity ratios were analyzed with respect to temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!