Agarwood, a non-wood product from the endangered Aquilaria and Gyrinops tress, is highly prized for its use in fragrances and medicines. The special formation process of agarwood is closely related to external injury and fungal infection. In this study, we demonstrate that infection of Aquilaria sinensis by Fusarium oxysporum, a soilborne fungus that causes vascular wilt diseases in diverse plants, induces agarwood formation. Based on these findings, an efficient method, termed F. oxysporum infection-induced formation of agarwood (FOIFA), was developed for the rapid production of quality agarwood. The agarwood formed in response to F. oxysporum infection was similar in structure and chemical composition to wild agarwood according to TLC (Thin-layer chromatography), HPLC (high performance liquid chromatography), and GC-MS (gas chromatography-mass spectrometry) analyses, except that the contents of alcohol-soluble extract, chromones, and essential oils (mainly sesquiterpenes) were higher in the formed agarwood.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635754PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277136PLOS

Publication Analysis

Top Keywords

agarwood
10
fusarium oxysporum
8
oxysporum infection-induced
8
infection-induced formation
8
formation agarwood
8
agarwood foifa
8
efficient method
8
quality agarwood
8
agarwood agarwood
8
formation
4

Similar Publications

Article Synopsis
  • Aquilaria agallocha is a valuable yet endangered plant known for producing agarwood, with parts containing medicinal and aromatic properties.
  • The study focused on the phytochemical analysis of A. agallocha roots, revealing significant levels of phenolic compounds, organic acids, and sugars, and strong antioxidant capacity.
  • The roots showed antibacterial activity against various gram-positive bacteria but were ineffective against gram-negative ones, highlighting their potential for medicinal use.
View Article and Find Full Text PDF

Aquilaria malaccensis Lam., an Agarwood-producing tree native to Southeast Asia, secretes oleoresin, a resin with diverse applications, in response to injuries. To explore the role of endosphere microbial communities during Agarwood development, we utilized a metagenomics approach across three stages: non-symptomatic (NC), symptomatic early (IN), and symptomatic mature (IN1).

View Article and Find Full Text PDF

Emerging multidrug-resistant (MDR) strains are the main challenges to the progression of new drug discovery. To diminish infectious disease-causing pathogens, new antibiotics are required while the drying pipeline of potent antibiotics is adding to the severity. Plant secondary metabolites or phytochemicals including alkaloids, phenols, flavonoids, and terpenes have successfully demonstrated their inhibitory potential against the drug-resistant pathogens.

View Article and Find Full Text PDF

A network pharmacology approach was used to construct comprehensive pharmacological networks, elucidating the interactions between agarwood compounds and key biological targets associated with cancer pathways. We have employed a combination of network pharmacology, molecular docking and molecular dynamics to unravel agarwood plants' active components and potential mechanisms. Reported 23 molecules were collected from the agarwood plants and considered to identify molecular targets.

View Article and Find Full Text PDF

Research on using Aquilaria sinensis callus to evaluate the agarwood-inducing potential of fungi.

PLoS One

December 2024

Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha, China.

Agarwood is a precious resinous heartwood highly valued for its cultural, religious, and medicinal significance. With the increasing market demand, natural agarwood resources are rapidly depleting, making the development of effective artificial induction methods for agarwood highly significant. This study aims to explore the feasibility of using callus tissue to assess the ability of fungi to induce agarwood formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!