Detection of SARS-CoV-2 has created an enormous workload for laboratories worldwide resulting in a restriction at the time of massive testing. Pool testing is a strategy that reduces time and costs. However, beyond the detection of infectious diseases in blood banks, this approach is rarely implemented in routine laboratories. Therefore, what was learned from the SARS-CoV-2 pool testing should represent an opportunity to increase diagnostic capabilities. The present work, carried out in the context of a diagnostic laboratory of a public hospital during the COVID-19 pandemic, represents a contribution to this end. The main limitation of pool testing is the risk of false negatives that could have been identified by individual tests. These limitations are the dilution of samples with a low virus load during pooling and that the integrity of the sample may be affected by the quality of the sample collection. Fortunately, both limitations coincide with the main strengths of droplet digital PCR (ddPCR). ddPCR is a third-generation PCR that splits the amplification into thousands of droplets that work in parallel, increasing sensitivity and resistance to inhibitors. Therefore, ddPCR is particularly useful for pool testing. Here we show how to factor between test sensitivity and savings in test time and resources. We have identified and optimized critical parameters for pool testing. The present study, which analyzed 1000 nasopharyngeal samples, showed that the pool testing could detect even a single positive sample with a CT value of up to 30 in pools of 34 samples. This test was performed using three different standard extraction methods, the simplest being heating only, which resulted in substantial savings of extraction reagents in addition to PCR reagents. Moreover, we show that pooling can be extended to use saliva, which is less invasive and allows self-collection, reducing the risk for health personnel.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635689 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271860 | PLOS |
Through biochemical transformation of host-derived bile acids (BAs), gut bacteria mediate host-microbe crosstalk and sit at the interface of nutrition, the microbiome, and disease. BAs play a crucial role in human health by facilitating the absorption of dietary lipophilic nutrients, interacting with hormone receptors to regulate host physiology, and shaping gut microbiota composition through antimicrobial activity. Bile acid deconjugation by bacterial bile salt hydrolase (BSH) has long been recognized as the first necessary BA modification required before further transformations can occur.
View Article and Find Full Text PDF-acting regulatory enhancer elements are valuable tools for gaining cell type-specific genetic access. Leveraging large chromatin accessibility atlases, putative enhancer sequences can be identified and deployed in adeno-associated virus (AAV) delivery platforms. However, a significant bottleneck in enhancer AAV discovery is charting their detailed expression patterns , a process that currently requires gold-standard one-by-one testing.
View Article and Find Full Text PDFHeliyon
January 2025
Bupa Lab, part of Bupa, La Florida, Santiago, Chile.
Background: The SARS-CoV-2 pandemic caused millions of infections worldwide. Among the strategies for effective containment, frequent and massive testing was fundamental. Although sample pooling allows multiplying the installed analysis capacity, the definition of the number of samples to include in a pool is commonly guided more by economic parameters than analytical quality.
View Article and Find Full Text PDFViruses
December 2024
Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia.
Human seasonal coronaviruses (hCoVs) are a group of viruses that affect the upper respiratory tract. While seasonal patterns and the annual variability of predominant hCoV species are well-documented, their genetic and species diversity in St. Petersburg and across Russia remains largely unexplored.
View Article and Find Full Text PDFPathogens
January 2025
Department of Entomology; The Global Change Center at Virginia Tech; and the Center for Emerging Zoonotic & Arthropod-Borne Pathogens (CeZAP), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
Rift Valley fever virus (RVFV) is an emerging mosquito-borne arbovirus of One Health importance that caused two large outbreaks in Rwanda in 2018 and 2022. Information on vector species with a role in RVFV eco-epidemiology in Rwanda is scarce. Here we sought to identify potential mosquito vectors of RVFV in Rwanda, their distribution and abundance, as well as their infection status.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!