New Horizons: Artificial Intelligence for Digital Breast Tomosynthesis.

Radiographics

From the Department of Radiology, NYU Langone Health, 550 1st Ave, New York, NY 10016.

Published: January 2023

The use of digital breast tomosynthesis (DBT) in breast cancer screening has become widely accepted, facilitating increased cancer detection and lower recall rates compared with those achieved by using full-field digital mammography (DM). However, the use of DBT, as compared with DM, raises new challenges, including a larger number of acquired images and thus longer interpretation times. While most current artificial intelligence (AI) applications are developed for DM, there are multiple potential opportunities for AI to augment the benefits of DBT. During the diagnostic steps of lesion detection, characterization, and classification, AI algorithms may not only assist in the detection of indeterminate or suspicious findings but also aid in predicting the likelihood of malignancy for a particular lesion. During image acquisition and processing, AI algorithms may help reduce radiation dose and improve lesion conspicuity on synthetic two-dimensional DM images. The use of AI algorithms may also improve workflow efficiency and decrease the radiologist's interpretation time. There has been significant growth in research that applies AI to DBT, with several algorithms approved by the U.S. Food and Drug Administration for clinical implementation. Further development of AI models for DBT has the potential to lead to improved practice efficiency and ultimately improved patient health outcomes of breast cancer screening and diagnostic evaluation. See the invited commentary by Bahl in this issue. RSNA, 2022.

Download full-text PDF

Source
http://dx.doi.org/10.1148/rg.220060DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
digital breast
8
breast tomosynthesis
8
breast cancer
8
cancer screening
8
dbt
5
horizons artificial
4
intelligence digital
4
breast
4
tomosynthesis digital
4

Similar Publications

Loneliness is associated with different structural brain changes in schizophrenia spectrum disorders and major depression.

Schizophr Res

January 2025

Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Center for Mental Health (DZPG), partner site Mannheim-Heidelberg-Ulm, Germany. Electronic address:

Background: Loneliness, distress from having fewer social contacts than desired, has been recognized as a significant public health crisis. Although a substantial body of research has established connections between loneliness and various forms of psychopathology, our understanding of the neural underpinnings of loneliness in schizophrenia spectrum disorders (SSD) and major depressive disorder (MDD) remains limited.

Methods: In this study, structural magnetic resonance imaging (sMRI) data were collected from 57 SSD and 45 MDD patients as well as 41 healthy controls (HC).

View Article and Find Full Text PDF

This research letter discusses the impact of different file formats on ChatGPT-4's performance on the Japanese National Nursing Examination, highlighting the need for standardized reporting protocols to enhance the integration of artificial intelligence in nursing education and practice.

View Article and Find Full Text PDF

Background: Patients with cerebrovascular accident (CVA) should be involved in setting their rehabilitation goals. A personalized prediction of CVA outcomes would allow care professionals to better inform patients and informal caregivers. Several accurate prediction models have been created, but acceptance and proper implementation of the models are prerequisites for model adoption.

View Article and Find Full Text PDF

Background: Perception-related errors comprise most diagnostic mistakes in radiology. To mitigate this problem, radiologists use personalized and high-dimensional visual search strategies, otherwise known as search patterns. Qualitative descriptions of these search patterns, which involve the physician verbalizing or annotating the order he or she analyzes the image, can be unreliable due to discrepancies in what is reported versus the actual visual patterns.

View Article and Find Full Text PDF

Background: Enhancing self-management in health care through digital tools is a promising strategy to empower patients with type 2 diabetes (T2D) to improve self-care.

Objective: This study evaluates whether the Greenhabit (mobile health [mHealth]) behavioral treatment enhances T2D outcomes compared with standard care.

Methods: A 12-week, parallel, single-blind randomized controlled trial was conducted with 123 participants (62/123, 50%, female; mean age 58.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!