Background: Due to deficiencies in the expression of hormone receptors, such as PR, ER and HER2, it is challenging to treat triple-negative breast cancer, which does not respond to single targeted therapy. Ruxolitinib is a Janus kinase (JAK)1/JAK2 inhibitor. MK-2206 is an allosteric AKT inhibitor. Due to the limited activities of ruxolitinib and MK-2206 for monotherapy, the need for cotreatment with other drugs has emerged. This study is the first to examine the effects of ruxolitinib and MK-2206 cotreatment on apoptosis and JAK2/STAT5 and PI3K/AKT signaling in MDA-MB-231 breast cancer cells. Additionally, this work aimed to decrease the side effects of ruxolitinib and increase its anticancer effects with MK-2206 cotreatment.
Methods And Results: Cell viability was reduced in a dose- and time-dependent manner after exposure to ruxolitinib, MK-2206 or both for 48 h, as shown by MTT assay. Ruxolitinib had a synergistic antiproliferative effect, as demonstrated by colony formation and wound healing assays. The effects of ruxolitinib, MK-2206 and their combination on apoptosis, as well as PI3K/AKT and JAK/STAT signaling, were examined by western blot analyses. Cotreatment with ruxolitinib and MK-2206 reduced proliferation with the dual inhibition of JAK2/STAT5 and PI3K/AKT signaling by decreasing PI3K, AKT, JAK2, STAT5, Caspase-9, Caspase-7, PARP, c-Myc, and Bcl-2 and increasing P53 and PTEN protein expression.
Conclusions: Our results revealed the roles of P53 and PTEN in the regulation of apoptosis and the PI3K/AKT and JAK2/STAT5 signaling pathways. The dual inhibition of JAK2/STAT5 and PI3K/AKT may reduce metastasis by decreasing tumor cell survival.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-022-08034-4 | DOI Listing |
J Investig Med
December 2024
Department of Molecular Biology and Genetics, Faculty of Science, Bilecik Şeyh Edebali University, Bilecik, Turkey.
Triple-positive breast cancer (TPBC) is a type of breast cancer that overexpresses estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2). Dysregulation of ER signaling has been implicated in the pathogenesis of breast cancer. ERα activation triggers the production of second messengers, including cAMP, leading to the activation of signals such as PI3K/AKT or Ras/MAPK.
View Article and Find Full Text PDFMol Biol Rep
January 2023
Department of Molecular Biology and Genetics, Faculty of Science, Bilecik Seyh Edebali University, Bilecik, Turkey.
Background: Due to deficiencies in the expression of hormone receptors, such as PR, ER and HER2, it is challenging to treat triple-negative breast cancer, which does not respond to single targeted therapy. Ruxolitinib is a Janus kinase (JAK)1/JAK2 inhibitor. MK-2206 is an allosteric AKT inhibitor.
View Article and Find Full Text PDFiScience
October 2021
Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
Schlafen11 (SLFN11) is referred to as interferon (IFN)-inducible. Based on cancer genomic databases, we identified human acute myeloid and lymphoblastic leukemia cells with gain-of-function mutations in the Janus kinase (JAK) family as exhibiting high SLFN11 expression. In these cells, the clinical JAK inhibitors cerdulatinib, ruxolitinib, and tofacitinib reduced SLFN11 expression, but IFN did not further induce SLFN11 despite phosphorylated STAT1.
View Article and Find Full Text PDFIntroduction: Somatic mutations in the calreticulin (CALR) gene occur in most myeloproliferative neoplasm (MPN) patients who lack Janus kinase 2 or thrombopoietin receptor (MPL) mutations, but the molecular pathogenesis of MPN with mutated CALR is unclear, which limited the further treatment for CALR gene mutant patients.
Objectives: Previous studies showed that CALR mutations not only activated serine/threonine protein kinase (AKT) in primary mouse bone marrow cells but also mitogen-activated protein kinases (MAPKs) in MARIMO cells harboring a heterozygous 61-bp deletion in CALR exon 9, which were responsible for mutant CALR cell survival, respectively. Hence, we aimed to initially explore the mechanism of AKT activation and observe the synergistic inhibitory effect of combining AKT (MK-2206) and MAPK kinase (AZD 6244) inhibitors in MARIMO cells.
Immunobiology
May 2019
HKU-AIDS Institute Shenzhen Research Laboratory, Shenzhen Key Laboratory of Infection and Immunity, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China; AIDS Institute, Research Center for Infection and Immunity, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China. Electronic address:
Background: We recently identified a novel alternatively spliced isoform of human programmed cell death 1 (PD-1), named Δ42PD1, which contains a 42-base-pair in-frame deletion compared with the full-length PD-1. Δ42PD1 is likely constitutively expressed on human monocytes and down-regulated in patients infected with human immunodeficiency virus type 1 (HIV-1). The mechanism underlying the regulation of Δ42PD-1 expression in monocytes remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!