Aim: HNF1α transcription factor regulates a network of genes involved in the development of β-cells and also serves as a model for transcription defects in pancreatic β-cells; mutations in this gene cause MODY. The goal of this study was to assess the promoter methylation and expression profile of the most common MODY causing gene, HNF1α, in Kashmiri MODY patients, as factors responsible for glucose dysregulation, as no such study had been performed on MODY patients in Kashmir previously.
Methods: The study included 85 Kashmiri subjects. Samples were extracted for DNA and RNA using standard protocols. The HNF1α promoter methylation profile was assessed by bisulfite conversion of the DNA followed by MSP, whereas qPCR was used for expression analysis.
Results: The expression of HNF1α was found to be upregulated (p value 0.0349*) in majority of MODY (60%) and T1D (72%) cases (p value 0.0349*). HNF1α expression was 1.33-fold higher in MODY cases with hypermethylated HNF1α promoters (p value 0.0360*). HNF1α expression was upregulated by 2.3-fold in MODY patients with HbA1c levels > 7% (p value 0.0025**). MODY cases with FBS levels > 7.7 mmol/l were upregulated by 0.646-fold than those with FBS levels ≤ 7.7 mmol/l (p value 0.0161*).
Conclusion: In this study, we found that as glucose dysregulation progresses, blood FBS, RBS, and HbA1c levels rise, and that at higher levels, HNF1α expression rises as well. From the results obtained, we may conclude that HNF1α is strongly upregulated in MODY, thus indicating the deleterious effect of over expression of HNF1α gene on glucose regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40618-022-01953-w | DOI Listing |
Gen Comp Endocrinol
January 2025
Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India. Electronic address:
The study emphasises how ubiquitous persistent organic pollutants (POPs) are and how terrible they are for the environment, specifically because of their tendency to build up in living things and cause a variety of health problems, including diabetes, obesity, and cardiovascular disorders. Due to POPs affinity for lipid-rich tissues, they accumulate in a variety of organs, where they cause metabolic disruption and initiate various anabolic pathways. Studies that use fish as a model organism clarify the metabolic effects of POPs, demonstrating non-adipose lipid accumulation and abnormal glucose homeostasis.
View Article and Find Full Text PDFJ Diabetes Sci Technol
January 2025
Profil, Neuss, Germany.
Background: Glucose is an essential molecule in energy metabolism. Dysregulated glucose metabolism, the defining feature of diabetes, requires active monitoring and treatment to prevent significant morbidity and mortality. Current technologies for intermittent and continuous glucose measurement are invasive.
View Article and Find Full Text PDFPharmacogenet Genomics
January 2025
Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA.
Objective: Heterocyclic amines (HCAs) are mutagens and carcinogens primarily generated when cooking meat at high temperatures or until well-done, and their major metabolic pathway includes hepatic N-hydroxylation via CYP1A2 followed by O-acetylation via N-acetyltransferase 2 (NAT2). NAT2 expresses a well-defined genetic polymorphism in humans resulting in rapid and slow acetylators. Recent epidemiological studies reported significant associations between dietary HCA exposure and insulin resistance and type II diabetes.
View Article and Find Full Text PDFBurns Trauma
January 2025
Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China.
Background: Non-thyroidal illness syndrome is commonly observed in critically ill patients, characterized by the inactivation of systemic thyroid hormones (TH), which aggravates metabolic dysfunction. Recent evidence indicates that enhanced TH inactivation is mediated by the reactivation of type 3 deiodinase (Dio3) at the tissue level, culminating in a perturbed local metabolic equilibrium. This study assessed whether targeted inhibition of Dio3 can maintain tissue metabolic homeostasis under septic conditions and explored the mechanism behind Dio3 reactivation.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China. Electronic address:
Asthma is a heterogeneous disease characterized by chronic airway inflammation and hyperresponsiveness. A number of immune cells are involved in asthma pathogenesis, such as eosinophils, mast cells, T lymphocytes and neutrophils, as well as airway epithelial cells. Glycolysis plays a crucial role in glucose metabolism, and serves as a bridge between metabolic and inflammatory dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!