Membrane bioreactor (MBR) is an attractive option method for treating azo dye wastewater under extreme conditions. The present study assessed the effect of salinity on the performance of anaerobic MBR in treating azo dye wastewater. Increased salinity showed adverse effects on the decolorization efficiency and chemical oxygen demand (COD) removal efficiency. The decolorization efficiency decreased from 95.8% to 82.3% and 73.1% with a stepwise increasing of salinity from 0 to 3% and 5%, respectively. The COD removal efficiency decreased from 80.7% to 71.3% when the salinity increased from 0 to 3% and then decreased to 58.6% at 5% salinity. The volatile fatty acids (VFAs) concentration also increased as the salinity increased. Furthermore, increased salinity led to the elevated production of soluble microbial products (SMP) and extracellular polymeric substances (EPS), which can provide a protective barrier against harsh environments. More serious membrane fouling was observed as the SMP and EPS concentrations increased. The concentration of loosely bound EPS (LB-EPS), tightly bound EPS (TB-EPS), and the polysaccharide/protein (PS/PN) ratios in LB-EPS and TB-EPS all increased when the salinity was elevated. The production of SMP and EPS was caused by the generation of PS in response to the saline environment. Lactobacillus, Lactococcus, Anaerosporobacter, and Pectinatus were the dominant bacteria, and Lactobacillus and Lactococcus were the decolorization bacteria in the MBR. The lack of halophilic bacteria was the main reason for the decreased decolorization efficiency in the salinity environment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-022-04223-wDOI Listing

Publication Analysis

Top Keywords

increased salinity
16
treating azo
12
azo dye
12
dye wastewater
12
decolorization efficiency
12
salinity
10
performance anaerobic
8
membrane bioreactor
8
cod removal
8
removal efficiency
8

Similar Publications

Nanoparticles enhance agricultural applications with their bioactivity, bioavailability, and reactivity. Selenium mitigates the adverse effects of salinity on plant growth, boosting antioxidant defense, metabolism, and resilience to abiotic stress. Our study applied selenium nanoparticles to mitigate salinity-induced damage and support plant growth.

View Article and Find Full Text PDF

Effects of 60 Hz non-uniform electromagnetic fields (EMFs) on the tomato (cv. L-05) seed germination, photosynthesis, and seedling growth under salt stress and laboratory conditions were investigated. A previous trial investigated the impact of salt stress levels (0, 40, 60, 80, and 100 mM NaCl) on tomato seeds, and the 100 mM NaCl level was selected to study the effects of EMFs in attenuating salinity stress on germination, physiology, and growth of tomato seedlings.

View Article and Find Full Text PDF

Worldwide, many coastal freshwater ecosystems suffer from seawater intrusion. In addition to this stressor, it is likely that the biota inhabiting these ecosystems will also need to deal with climate change-related temperature fluctuations. The resilience of populations to long-term exposure to these stressors will depend on their genetic diversity, a key for their adaptation to changing environments.

View Article and Find Full Text PDF

Water conveyance channels in cold and arid regions pass through several saline-alkali soil areas. Canal water leakage exacerbates the salt expansion traits of such soil, damaging canal slope lining structures. To investigate the mechanical properties of saline clay, this study conducted indoor tests, including direct shear, compression, and permeation tests, and scanning electron microscopy (SEM) analysis of soil samples from typical sites.

View Article and Find Full Text PDF

Bioremediation of alkane-containing saline soils using the long-chain alkane-degrading bacterium Pseudomonas aeruginosa DL: Effects, communities, and networks.

J Hazard Mater

January 2025

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China. Electronic address:

Remediation of soil contaminated with long-chain hydrocarbons and affected by salinization poses a considerable challenge. The isolation of a bacterial strain, identified as Pseudomonas aeruginosa DL, from petroleum-contaminated saline-alkali soil has been reported in this study. The strain demonstrated a high capacity to degrade long-chain alkanes and exhibited adaptability to saline-alkali conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!