This article presents a novel probabilistic forecasting method called ensemble conformalized quantile regression (EnCQR). EnCQR constructs distribution-free and approximately marginally valid prediction intervals (PIs), which are suitable for nonstationary and heteroscedastic time series data. EnCQR can be applied on top of a generic forecasting model, including deep learning architectures. EnCQR exploits a bootstrap ensemble estimator, which enables the use of conformal predictors for time series by removing the requirement of data exchangeability. The ensemble learners are implemented as generic machine learning algorithms performing quantile regression (QR), which allow the length of the PIs to adapt to local variability in the data. In the experiments, we predict time series characterized by a different amount of heteroscedasticity. The results demonstrate that EnCQR outperforms models based only on QR or conformal prediction (CP), and it provides sharper, more informative, and valid PIs.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2022.3217694DOI Listing

Publication Analysis

Top Keywords

time series
16
quantile regression
12
ensemble conformalized
8
conformalized quantile
8
encqr
5
ensemble
4
regression probabilistic
4
time
4
probabilistic time
4
series
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!