Heterogeneous catalysts are materials with a complex structure at the atomic to mesoscopic scale, which depends on a variety of empirical parameters applied during preparation and processing. Although model systems clarified the general physical and chemical phenomena relevant to catalysis, such as hydrogen spillover, a rational design of heterogeneous catalysts is impeded by the sheer number of parameters. Combinatorial methods and high-throughput techniques have the potential of accelerating the development of optimal catalysts. We describe here a combinatorial approach based on hydrogen adsorption/absorption and hydrogen-deuterium exchange quantified by neutron imaging. The method coined CONI is capable of measuring more than 50 samples simultaneously. As a proof of concept, we study Pt catalyzed WO as an archetypal spillover system, and a Ni-catalyst supported on AlO and SiO. CONI is ideally suited to distinguish between irreversible surface adsorption and reversible bulk absorption, providing quantitative information. Concretely, CONI yields the number of reversibly adsorbed/absorbed hydrogen atoms in and on a great number of various catalysts in a single experiment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp03863c | DOI Listing |
Appl Radiat Isot
January 2025
Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan; Nuclear Science and Technology Development Center, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan. Electronic address:
In clinical boron neutron capture therapy (BNCT), the distribution of dose to a heterogeneous medium that is predicted by a treatment planning system (TPS) should be experimentally validated. A head phantom specifically developed for this purpose is described and demonstrated herein. The cylindrical phantom exhibits distinct regions made from four materials (polymethyl methacrylate, calcium phosphate, air, and boric acid) to approximate a head structure with explicitly defined skin, skull, and brain tissue with a cavity and tumor within.
View Article and Find Full Text PDFScience
January 2025
Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, UK.
The distribution of substitutional aluminum (Al) atoms in zeolites affects molecular adsorbate geometry, catalytic activity, and shape and size selectivity. Accurately determining Al positions has been challenging. We used synchrotron resonant soft x-ray diffraction (RSXRD) at multiple energies near the Al K-edge combined with molecular adsorption techniques to precisely locate "single Al" and "Al pairs" in a commercial H-ZSM-5 zeolite.
View Article and Find Full Text PDFSci Rep
January 2025
Helmholtz-Zentrum Berlin für Materialien und Energie, 13109, Berlin, Germany.
Incommensurate magnetic phases in chiral cubic crystals are an established source of topological spin textures such as skyrmion and hedgehog lattices, with potential applications in spintronics and information storage. We report a comprehensive small-angle neutron scattering (SANS) study on the B20-type chiral magnet Cr[Formula: see text]Mn[Formula: see text]Ge, exploring its magnetic phase diagram and confirming the stabilization of a skyrmion lattice under low magnetic fields. Our results reveal a helical ground state with a decreasing pitch from 40 to 35 nm upon cooling, and a skyrmion phase stable in applied magnetic fields of 10-30 mT, and over an unusually wide temperature range for chiral magnets of 6 K ([Formula: see text], [Formula: see text] K).
View Article and Find Full Text PDFAppl Radiat Isot
March 2025
Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, India.
This study shows an implementation of neutron-gamma pulse shape discrimination (PSD) using a two-dimensional convolutional neural network. The inputs to the network are snapshots of the unprocessed, digitized signals from a BC501A detector. By exposing a BC501A detector to a Cf-252 source, neutron and gamma signals were collected to create a training dataset.
View Article and Find Full Text PDFHypothesis: The oil phase controls the persistence length and aqueous channel diameter of reverse wormlike micelles (RWLMs), specifically by tuning the cohesive energy density of alkanes.
Experiments: We explore the influence of alkanes with varying chain lengths on the rheological properties, structural parameters, and morphology of RWLMs. To establish a link between the solvent characteristics and the structure of RWLMs, we employ a diverse set of complementary techniques, including rheological analysis, small-angle X-ray scattering (SAXS), Fourier-transform infrared (FT-IR) spectroscopy, and cryogenic transmission electron microscopy (cryo-TEM).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!