Dr. Reddy's Laboratories rituximab (DRL_RI; Dr. Reddy's Laboratories SA, Basel, Switzerland) is under development as a rituximab biosimilar. Study RI-01-002 (Clinical Trials Registry - India/2012/11/003129), comparing DRL_RI to the reference medicinal product (RMP) MabThera® (Roche, Grenzach-Wyhlen, Germany), demonstrated pharmacokinetic (PK) equivalence and showed comparable pharmacodynamic, efficacy, safety, and immunogenicity profiles. We used data from the same study to perform population PK and PK-pharmacodynamic analyses: first exploring possible factors influencing the PK similarity assessment between products and then performing simulations to investigate the impact of tumor size on rituximab PK. Nonlinear mixed-effects models for PK, tumor size, tumor size-PK, and tumor response were developed independently. The final PK model included drug product as a dose-scaling parameter and predicted a 6.75% higher dose reaching the system in RMP-treated patients. However, when tumor size was included in the tumor size-PK model, the drug product effect was no longer observed. The model rather indicated that patients with larger tumor size have higher clearance. Further simulations confirmed that higher baseline tumor size is associated to slightly lower rituximab exposure. Tumor response, described by a continuous-time Markov model, did not differ between drug products. Both had higher effects during the first 20 weeks of treatment. Also, the model described a subpopulation of nonresponders to treatment (42%) with faster transitions to a worse state. The different rituximab exposure initially detected between drug products (6.75%) was shown using PK/PK-pharmacodynamic analysis to be attributed to a tumor size imbalance between treatment groups. PK/PK-pharmacodynamic analyses may contribute to PK similarity assessments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931428PMC
http://dx.doi.org/10.1002/psp4.12885DOI Listing

Publication Analysis

Top Keywords

tumor size
28
tumor
11
reddy's laboratories
8
tumor size-pk
8
tumor response
8
drug product
8
rituximab exposure
8
drug products
8
size
7
rituximab
6

Similar Publications

Manual segmentation of lesions, required for radiotherapy planning and follow-up, is time-consuming and error-prone. Automatic detection and segmentation can assist radiologists in these tasks. This work explores the automated detection and segmentation of brain metastases (BMs) in longitudinal MRIs.

View Article and Find Full Text PDF

Patients with recurrent high-grade glioma (rHGG) have a poor prognosis with median progression-free survival (PFS) of <7 months. Responses to treatment are heterogenous, suggesting a clinical need for prognostic models. Bayesian data analysis can exploit individual patient follow-up imaging studies to adaptively predict the risk of progression.

View Article and Find Full Text PDF

Dual-stage optimizer for systematic overestimation adjustment applied to multi-objective genetic algorithms for biomarker selection.

Brief Bioinform

November 2024

School of Medicine, Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 1, PO Box 1627, 70211 Kuopio, Finland.

The selection of biomarker panels in omics data, challenged by numerous molecular features and limited samples, often requires the use of machine learning methods paired with wrapper feature selection techniques, like genetic algorithms. They test various feature sets-potential biomarker solutions-to fine-tune a machine learning model's performance for supervised tasks, such as classifying cancer subtypes. This optimization process is undertaken using validation sets to evaluate and identify the most effective feature combinations.

View Article and Find Full Text PDF

The increasing prevalence of dental pathogens and oral cancer calls for new therapeutic agents. Nanoparticle (NPs) based tumor therapy enables precise targeting and controlled drug release, improving anti-cancer treatment efficacy while reducing systemic toxicity. Zinc oxide NPs (ZnO NPs) are notable in nanomedicine for their exceptional physicochemical and biological properties.

View Article and Find Full Text PDF

Lung cancer, as a serious threat to human health and life, necessitating urgent treatment and intervention. In this study, we prepared hyaluronic acid (HA)-targeted topotecan liposomes for site-specific delivery to tumor cells. The encapsulation efficiency, stability, chemical structure, and morphology of HA-targeted topotecan liposomes were studied, and the release properties, cellular uptake capacity, and therapeutic efficacy of topotecan were further investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!