Pulmonary hemorrhage (PH) is a rare acute catastrophic event with high mortality among neonates, especially preterm infants. Primary treatments included pulmonary surfactant, high-frequency oscillatory ventilation, epinephrine, coagulopathy management, and intermittent positive pressure ventilation. However, there are still challenges in diagnosing and treating refractory or focal pulmonary hemorrhages. Ultra-slim bronchoscopy has been widely used in the field of critically ill children and is increasingly being done in neonates with critical respiratory disease in recent years. In this study, we report a case with refractory pulmonary hemorrhage in premature infants, which was finally diagnosed as localized hemorrhage in the upper left lobe and cured by ultra-slim bronchoscopy-guided topical hemostatic drug administration. Bronchoscopy is an optional, safe, and practicable technique for early diagnosis and direct injection therapy of neonatal PH in managing life-threatening PH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9623275 | PMC |
http://dx.doi.org/10.3389/fped.2022.981006 | DOI Listing |
JNCI Cancer Spectr
January 2025
Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States.
Background: Cancer patients have up to a 3-fold higher risk for cardiovascular disease (CVD) than the general population. Traditional CVD risk scores may be less accurate for them. We aimed to develop cancer-specific CVD risk scores and compare them with conventional scores in predicting 10-year CVD risk for patients with breast cancer (BC), colorectal cancer (CRC), or lung cancer (LC).
View Article and Find Full Text PDFPulmonology
December 2025
Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK.
Age-related lung function decline is associated with small airway closure and gas trapping. The mechanisms which cause these changes are not fully understood. It has been suggested that COPD is caused by accelerated ageing.
View Article and Find Full Text PDFPulmonology
December 2025
State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
Interleukin-1β is one of the major cytokines involved in the initiation and persistence of airway inflammation in chronic obstructive pulmonary disease (COPD). However, the association between plasma interleukin-1β and lung function decline remains unclear. We aimed to explore the association between plasma interleukin-1β and lung function decline.
View Article and Find Full Text PDFJ Epidemiol Glob Health
January 2025
Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, No.7, Chung Shan S. Rd., Zhongzheng District, Taipei City, 100225, Taiwan.
Background: Lipids are known to be involved in carcinogenesis, but the associations between lipid profiles and different lung cancer histological classifications remain unknown.
Methods: Individuals who participated in national adult health surveillance from 2012 to 2018 were included. For patients who developed lung cancer during follow-up, a 1:2 control group of nonlung cancer participants was selected after matching.
Anesthesiology
January 2025
Department of Critical Care, Melbourne Medicine School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia.
Background: Multi-compartment computer models of heterogeneity in alveolar ventilation-perfusion ratios (VA/Q scatter) across the lung explain the significant alveolar-arterial (A-a) partial pressure gradients and associated alveolar dead-space fractions (VDA/VA) seen in anesthetized patients for both carbon dioxide and for anesthetic gases of different blood solubilities. However, the accuracy of a simpler two-compartment model of VA/Q scatter to do this has not been tested or compared to calculations from the traditional Riley model with "ideal", unventilated (shunt) and unperfused (deadspace) compartments.
Methods: Measurements of gas partial pressures in inspired and expired gas and arterial and mixed venous blood from 29 patients undergoing inhalational general anesthesia for cardiac surgery was used to compare the accuracy of two simple models of VA/Q scatter and lung gas exchange in predicting measured alveolar and arterial partial pressure differences, and associated alveolar dead-space calculations for the modern anesthetic gases isoflurane, sevoflurane and desflurane.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!