Frustrated 'run and tumble' of swimming bacteria in nematic liquid crystals.

Interface Focus

Laboratoire de Physique et Mécanique des Milieux Hétérogènes, UMR 7636, CNRS, ESPCI Paris-PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France.

Published: December 2022

In many situations, bacteria move in complex environments, as soils, oceans or the human gut-track, where carrier fluids show complex structures associated with non-Newtonian rheology. Many fundamental questions concerning the ability to navigate in such environments remain unsolved. Recently, it has been shown that the kinetics of bacterial motion in structured fluids as liquid crystals (LCs) is constrained by the orientational molecular order (or director field) and that novel spatio-temporal patterns arise. A question unaddressed so far is how bacteria change swimming direction in such an environment. In this work, we study the swimming mechanism of a single bacterium, , constrained to move along the director field of a lyotropic chromonic liquid crystal confined to a planar cell. Here, the spontaneous 'run and tumble' motion of the bacterium gets frustrated: the elasticity of the LC prevents flagella from unbundling. Interestingly, to change direction, bacteria execute a reversal motion along the director field, driven by the relocation of a single flagellum, a 'frustrated tumble'. We characterize this phenomenon in detail experimentally, exploiting exceptional spatial and temporal resolution of bacterial and flagellar dynamics, using a two colour Lagrangian tracking technique. We suggest a possible mechanism accounting for these observations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560793PMC
http://dx.doi.org/10.1098/rsfs.2022.0039DOI Listing

Publication Analysis

Top Keywords

director field
12
'run tumble'
8
liquid crystals
8
frustrated 'run
4
tumble' swimming
4
bacteria
4
swimming bacteria
4
bacteria nematic
4
nematic liquid
4
crystals situations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!