T cells orchestrate adaptive and innate immune responses against pathogens and transformed cells. However, T cells are also the main adaptive effector cells that mediate allergic and autoimmune reactions. Within the last few years, it has become abundantly clear that activation, differentiation, effector function, and environmental adaptation of T cells is closely linked to their energy metabolism. Beyond the provision of energy equivalents, metabolic pathways in T cells generate building blocks required for clonal expansion. Furthermore, metabolic intermediates directly serve as a source for epigenetic gene regulation by histone and DNA modification mechanisms. To date, several antibiotics were demonstrated to modulate the metabolism of T cells especially by altering mitochondrial function. Here, we set out to systematically review current evidence about how beta-lactam antibiotics, macrolides, fluoroquinolones, tetracyclines, oxazolidinones, nitroimidazoles, and amphenicols alter the metabolism and effector functions of CD4 T helper cell populations and CD8 T cells and . Based on this evidence, we have developed an overview on how the use of these antibiotics may be beneficial or detrimental in T cell-mediated physiological and pathogenic immune responses, such as allergic and autoimmune diseases, by altering the metabolism of different T cell populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9623020 | PMC |
http://dx.doi.org/10.3389/fmicb.2022.975436 | DOI Listing |
Viruses
December 2024
Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
The feline panleukopenia virus (FPV) is a highly contagious virus that affects cats worldwide, characterized by leukopenia, high temperature and diarrhea. Recently, the continuous prevalence and variation of FPV have attracted widespread concern. The aim of this study was to investigate the isolation, genetic evolution, molecular characterization and epidemiological analysis of FPV strains among cats and dogs in China from 2019 to 2024.
View Article and Find Full Text PDFViruses
December 2024
Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany.
Recently, we demonstrated that the oncolytic Coxsackievirus B3 (CVB3) strain PD-H can be efficiently adapted to resistant colorectal cancer cells through dose-dependent passaging in colorectal cancer cells. However, the method is time-consuming, which limits its clinical applicability. Here, we investigated whether the manufacturing time of the adapted virus can be reduced by replacing the dose-based passaging with volume-based passaging.
View Article and Find Full Text PDFViruses
December 2024
School of Medicine, Zhejiang University, Hangzhou 310063, China.
The Junín virus (JUNV) is one of the New World arenaviruses that cause severe hemorrhagic fever. Human transferrin receptor 1 (hTfR1) has been identified as the main receptor for JUNV for virus entry into host cells. To date, no treatment has been approved for JUNV.
View Article and Find Full Text PDFViruses
December 2024
1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece.
People with HIV (PWH) have an elevated risk of cardiovascular disease compared to those without HIV. This study aimed to investigate the relative serum expression of microRNAs (miRNAs) associated with arterial stiffness, a significant marker of cardiovascular disease. A total of 36 male PWH and 36 people without HIV, matched for age, body mass index, pack years, and dyslipidemia, were included in the study.
View Article and Find Full Text PDFViruses
December 2024
Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, I-50134 Florence, Italy.
Background: Understanding the interference patterns of respiratory viruses could be important for shedding light on potential strategies to combat these human infectious agents.
Objective: To investigate the possible interactions between adenovirus type 2 (AdV2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A/H1N1 pandemic (H1N1pdm09) using the A549 cell line.
Methods: Single infections, co-infections, and superinfections (at 3 and 24 h after the first virus infection) were performed by varying the multiplicity of infection (MOI).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!