Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The immunomodulatory capacity of the human mesenchymal stromal cell (MSC) secretome has been a critical driver for the development of cell-free MSC products, such as conditioned medium (CM), for regenerative medicine applications. This is particularly true as cell-free MSC products present several advantages over direct autologous or allogeneic MSC delivery with respect to safety, manufacturability, and defined potency. Recently, significant effort has been placed into creating novel MSC CM formulations with an immunomodulatory capacity tailored for specific regenerative contexts. For instance, the immunoregulatory nature of MSC CM has previously been tuned through a number of cytokine-priming strategies. Herein, we propose an alternate method to tailor the immunomodulatory "phenotype" of cytokine-primed MSC CM through coupling with the pharmacological agent, suramin. Suramin interferes with the signaling of purines including extracellular adenosine triphosphate (ATP), which plays a critical role in the activation of the innate immune system after injury. Toward this end, human THP-1-derived macrophages were activated to a proinflammatory phenotype and treated with (1) unprimed/native MSC CM, (2) interferon-γ/tumor necrosis factor α-primed MSC CM (primed CM), (3) suramin alone, or (4) primed MSC CM and suramin (primed CM/suramin). Markers of key macrophage functions-cytokine secretion, autophagy, oxidative stress modulation, and activation/migration-were assessed. Consistent with previous literature, primed CM elevated macrophage secretion of several proinflammatory and pleiotropic cytokines relative to native CM; whereas addition of suramin imparted consistent shifts in terms of TNFα (↓), interleukin-10 (↓), and hepatocyte growth factor (↑) irrespective of CM. In addition, both primed CM and suramin, individually and combined, increased reactive oxygen species production relative to native CM, and addition of suramin to primed CM shifted levels of CX3CL1, a factor involved in ATP-associated macrophage regulation. Varimax rotation assessment of the secreted cytokine profiles confirmed that primed CM/suramin resulted in a THP-1 phenotypic shift away from the lipopolysaccharide-activated proinflammatory state that was distinct from that of primed CM or native CM alone. This altered primed CM/suramin-associated phenotype may prove beneficial for healing in certain regenerative contexts. These results may inform future work coupling antipurinergic treatments with MSC-derived therapies in regenerative medicine applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807257 | PMC |
http://dx.doi.org/10.1089/ten.TEC.2022.0123 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!