Background: The accuracy of continuous glucose monitoring (CGM) systems is crucial for the management of glucose levels in individuals with diabetes mellitus. However, the discussion of CGM accuracy is challenged by an abundance of parameters and assessment methods. The aim of this article is to introduce the Continuous Glucose Deviation Interval and Variability Analysis (CG-DIVA), a new approach for a comprehensive characterization of CGM point accuracy which is based on the U.S. Food and Drug Administration requirements for "integrated" CGM systems.

Methods: The statistical concept of tolerance intervals and data from two approved CGM systems was used to illustrate the CG-DIVA.

Results: The CG-DIVA characterizes the expected range of deviations of the CGM system from a comparison method in different glucose concentration ranges and the variability of accuracy within and between sensors. The results of the CG-DIVA are visualized in an intuitive and straightforward graphical presentation. Compared with conventional accuracy characterizations, the CG-DIVA infers the expected accuracy of a CGM system and highlights important differences between CGM systems. Furthermore, it provides information on the incidence of large errors which are of particular clinical relevance. A software implementation of the CG-DIVA is freely available (https://github.com/IfDTUlm/CGM_Performance_Assessment).

Conclusions: We argue that the CG-DIVA can simplify the discussion and comparison of CGM accuracy and could replace the high number of conventional approaches. Future adaptations of the approach could thus become a putative standard for the accuracy characterization of CGM systems and serve as the basis for the definition of future CGM performance requirements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11307236PMC
http://dx.doi.org/10.1177/19322968221134639DOI Listing

Publication Analysis

Top Keywords

continuous glucose
16
cgm systems
16
cgm
11
accuracy
9
glucose deviation
8
deviation interval
8
interval variability
8
variability analysis
8
analysis cg-diva
8
glucose monitoring
8

Similar Publications

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

Introduction: The identification of type 1 diabetes at an early presymptomatic stage has clinical benefits. These include a reduced risk of diabetic ketoacidosis (DKA) at the clinical manifestation of the disease and a significant reduction in clinical symptoms. The European action for the Diagnosis of Early Non-clinical Type 1 diabetes For disease Interception (EDENT1FI) represents a pioneering effort to advance early detection of type 1 diabetes through public health screening.

View Article and Find Full Text PDF

Accurate and continuous blood glucose monitoring is essential for effective diabetes management, yet traditional finger pricking methods are often inconvenient and painful. To address this issue, photoplethysmography (PPG) presents a promising non-invasive alternative for estimating blood glucose levels. In this study, we propose an innovative 1-second signal segmentation method and evaluate the performance of three advanced deep learning models using a novel dataset to estimate blood glucose levels from PPG signals.

View Article and Find Full Text PDF

This review summarizes the mechanism and role of physical activity in maintaining the proper functioning of the musculoskeletal system. Bone adaptation to the mechanical environment occurs in skeletal regions subjected to the greatest stresses resulting from the nature of exercise, however, there is a varied response of bone tissue to mechanical loads depending on its material and structural properties (trabecular and cortical). The regulation of bone tissue metabolism during physical exercise is influenced by factors associated with mechanical stress (gravitational forces, impact loading, and muscular contractions) as well as by systemic mechanisms (hormones, myokines, cytokines).

View Article and Find Full Text PDF

Introduction: Type 1 diabetes involves immune-mediated destruction of insulin-producing beta cells, with eosinophils potentially playing a significant role. Recent studies suggest that leukotriene inhibition might influence this process. This case report presents a novel observation of montelukast, a leukotriene receptor antagonist, reducing insulin requirements in a patient with Latent Autoimmune Diabetes in Adults (LADA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!