Introduction: Autoimmune disorders such as type 1 diabetes (T1D) are believed to be caused by the interplay between several genetic and environmental factors. Elucidation of the role of environmental factors in metabolic and immune dysfunction leading to autoimmune disease is not yet well characterized.
Objectives: Here we investigated the impact of exposure to a mixture of persistent organic pollutants (POPs) on the metabolome in non-obese diabetic (NOD) mice, an experimental model of T1D. The mixture contained organochlorides, organobromides, and per- and polyfluoroalkyl substances (PFAS).
Methods: Analysis of molecular lipids (lipidomics) and bile acids in serum samples was performed by UPLC-Q-TOF/MS, while polar metabolites were analyzed by GC-Q-TOF/MS.
Results: Experimental exposure to the POP mixture in these mice led to several metabolic changes, which were similar to those previously reported as associated with PFAS exposure, as well as risk of T1D in human studies. This included an increase in the levels of sugar derivatives, triacylglycerols and lithocholic acid, and a decrease in long chain fatty acids and several lipid classes, including phosphatidylcholines, lysophosphatidylcholines and sphingomyelins.
Conclusion: Taken together, our study demonstrates that exposure to POPs results in an altered metabolic signature previously associated with autoimmunity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633531 | PMC |
http://dx.doi.org/10.1007/s11306-022-01945-0 | DOI Listing |
ACS Omega
December 2024
School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, U.K.
Modulating memristors optically paves the way for new optoelectronic devices with applications in computer vision, neuromorphic computing, and artificial intelligence. Here, we report on memristors based on a hybrid material of vertically aligned zinc oxide nanorods (ZnO NRs) and poly(methyl methacrylate) (PMMA). The memristors require no forming step and exhibit the typical electronic switching properties of a bipolar memristor.
View Article and Find Full Text PDFLangmuir
January 2025
School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China.
Cobalt-based metal-organic framework (MOFs)-derived catalysts are acknowledged for their effectiveness in activating peroxymonosulfate (PMS) for the treatment of persistent pollutants. However, the limited adsorption of PMS on the catalyst surface markedly reduces its degradation efficiency. To overcome this limitation, nanoflower-like EuO/CoO-0.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Hexachlorobutadiene (HCBD), as an emerging persistent organic pollutant, poses a pressing global environmental issue concerning its reduction and control. However, the lack of systematic studies on the sources and occurrence of HCBD hinders the development of effective disposal technologies. This study addresses HCBD prevention and treatment from multiple perspectives, including source emissions, environmental contamination distribution, and control technologies.
View Article and Find Full Text PDFChemosphere
January 2025
Swiss Federal Institute for Materials Science and Technology Empa, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, 8600, Dübendorf, Switzerland. Electronic address:
High production rates of chlorinated paraffins (CPs) and their widespread use resulted in a global contamination. Since 2017, short-chain CPs (SCCPs, C-C) are listed as persistent organic pollutants (POPs) in the Stockholm Convention. Technical CP mixtures contain hundreds of homologues and side products such as chlorinated olefins (COs), diolefins (CdiOs) and triolefins (CtriOs).
View Article and Find Full Text PDFChemosphere
January 2025
Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea. Electronic address:
This study investigated legacy persistent organic pollutants, including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), and per- and polyfluoroalkyl substances (PFAS), as well as their alternatives, in sediments from five major rivers, to assess their contamination status and usage patterns. The concentration levels of ΣPBDEs (median 9.98 ng/g dry weight (dw), mean 190 ng/g dw), ΣHBCDs (median 9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!