Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The size and chemical content of particles in electronic cigarette vapors (e-vapors) dictate their fate in the human body. Understanding how particles in e-vapors are formed and their size is critical to identifying and mitigating the adverse consequences of vaping. Thermal decomposition and reactions of the refill liquid (e-liquid) components play a key role in new particles formation. Here we report the evolution of particle number concentration in e-vapors over time for variable mixtures of refill e-liquids and operating conditions. Particle with aerodynamic diameter < 300 nm accounted for up to 17% (or 780 μg/m) of e-vapors particles. Two events of increasing particle number concentration were observed, 2-3 s after puff completion and a second 4-5 s later. The intensity of each event varied by the abundance of propylene glycol, glycerol, and flavorings in e-liquids. Propylene glycol and glycerol were associated with the first event. Flavorings containing aromatic and aliphatic unsaturated functional groups were strongly associated with the second event and to a lesser extent with the first one. The results indicate that particles in e-vapors may be formed through the heteromolecular condensation of propylene glycol, glycerol, and flavorings, including both parent chemicals and/or their thermal decomposition products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633786 | PMC |
http://dx.doi.org/10.1038/s41598-022-21798-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!