The application of an electric field through two-dimensional materials (2DMs) modifies their properties. For example, a bandgap opens in semimetallic bilayer graphene while the bandgap shrinks in few-layer 2D semiconductors. The maximum electric field strength achievable in conventional devices is limited to ≤0.3 V/nm by the dielectric breakdown of gate dielectrics. Here, we overcome this limit by suspending a 2DM between two volumes of ionic liquid (IL) with independently controlled potentials. The potential difference between the ILs falls across an ultrathin layer consisting of the 2DM and the electrical double layers above and below it, producing an intense electric field larger than 4 V/nm. This field is strong enough to close the bandgap of few-layer WSe, thereby driving a semiconductor-to-metal transition. The ability to apply fields an order of magnitude higher than what is possible in dielectric-gated devices grants access to previously-inaccessible phenomena occurring in intense electric fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633598 | PMC |
http://dx.doi.org/10.1038/s41467-022-34158-z | DOI Listing |
Nanomaterials (Basel)
January 2025
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.
The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215137, China.
Composite coatings reinforced with varying mass fractions of SiC particles were successfully fabricated on 316 stainless steel substrates via laser cladding. The phase compositions, elemental distribution, microstructural characteristics, hardness, wear resistance and corrosion resistance of the composite coatings were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Vickers hardness testing, friction-wear testing and electrochemical methods. The coatings have no obvious pores, cracks or other defects.
View Article and Find Full Text PDFACS Nano
January 2025
Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil.
Monolayers of transition-metal dichalcogenides, such as MoS, have attracted significant attention for their exceptional electronic and optical properties, positioning them as ideal candidates for advanced optoelectronic applications. Despite their strong excitonic effects, the atomic-scale thickness of these materials limits their light absorption efficiency, necessitating innovative strategies to enhance light-matter interactions. Plasmonic nanostructures offer a promising solution to overcome those challenges by amplifying the electromagnetic field and also introducing other mechanisms, such as hot electron injection.
View Article and Find Full Text PDFBMC Anesthesiol
January 2025
Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Background: High-frequency, high-intensity transcutaneous electrical nerve stimulation (HFHI TENS, i.e. 80 Hz and 40-60 mA) is an effective, fast-acting pain relief modality after elective surgery, offering pain relief within 5 min.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, People's Republic of China.
Ultraviolet (UV) irradiation is dangerous and can cause serious skin diseases if skin is excessively exposed to it. Thus, it is highly desirable for human health to monitor the UV radiation intensity. In this report, a flexible and stretchable dual-response UV radiation detector is reported by integrating UV-responsive color-switchable WO quantum dots (QDs) with an electrical hydrogel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!