Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The use of deep learning (DL) in medical imaging is becoming increasingly widespread. Although DL has been used previously for the segmentation of facial bones in computed tomography (CT) images, there are few reports of segmentation involving multiple areas. In this study, a U-Net was used to investigate the automatic segmentation of facial bones into eight areas, with the aim of facilitating virtual surgical planning (VSP) and computer-aided design and manufacturing (CAD/CAM) in maxillofacial surgery. CT data from 50 patients were prepared and used for training, and five-fold cross-validation was performed. The output results generated by the DL model were validated by Dice coefficient and average symmetric surface distance (ASSD). The automatic segmentation was successful in all cases, with a mean± standard deviation Dice coefficient of 0.897 ± 0.077 and ASSD of 1.168 ± 1.962 mm. The accuracy was very high for the mandible (Dice coefficient 0.984, ASSD 0.324 mm) and zygomatic bones (Dice coefficient 0.931, ASSD 0.487 mm), and these could be introduced for VSP and CAD/CAM without any modification. The results for other areas, particularly the teeth, were slightly inferior, with possible reasons being the effects of defects, bonded maxillary and mandibular teeth, and metal artefacts. A limitation of this study is that the data were from a single institution. Hence further research is required to improve the accuracy for some facial areas and to validate the results in larger and more diverse populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijom.2022.10.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!