Lithium-sulfur (Li-S) batteries have attracted great interest due to their low cost, high theoretical energy density, and environmental friendliness. However, the sluggish conversion of lithium polysulfides (LiPS) to S and Li S during the charge/discharge process leads to unsatisfactory rate performance of lower to 0.1 C (1 C = 1675 mA g ) especially for Li-S pouch batteries, thus hindering their practical applications in high power batteries. Here, well-defined and monodispersed Ni single-atom catalysts (SACs) embedded in highly porous nitrogen-doped graphitic carbons (NiSA-N-PGC) are designed and synthesized to form Ni-N catalytic sites at the atomic level. When serving as a bifunctional electrocatalyst, the Ni-N catalytic sites cannot only promote the interfacial conversion redox of LiPS by accelerating the transformation kinetics, but also suppress the undesirable shuttle effect by immobilizing LiPS. These findings are verified by both experimental results and DFT theoretical calculations. Furthermore, Li ions show low diffusion barrier on the surface of Ni-N sites, resulting in enhanced areal capacity of batteries. As a result, the Li-S battery delivers stable cycling life of more than 600 cycles with 0.069% capacity decay per cycle at a rate of 0.5 C. More importantly, the Li-S pouch cells with NiSA-N-PGC show an initial capacity of 1299 mAh g at a rate of 0.2 C even with high sulfur loading of 6 mg cm . This work opens up an avenue for developing single-atom catalysts to accelerate the kinetic conversion of LiPS for highly stable Li-S batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202205470 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Harbin Institute of Technology, School of Chemistry and Chemical Engineering, No. 92, West Dazhi Street, 150001, Harbin, CHINA.
Commercial hard carbon (HC) anode suffers from unexpected interphase chemistry rooted in the parasitic reactions between surface oxygen-functional groups and ester-based electrolytes. Herein, an innovative strategy is proposed to regulate interphase chemistry by tailoring targeted functional groups on the HC surface, where highly active undesirable oxygen-functional groups are skillfully converted into a Si-O-Si molecular layer favorable for anchoring anions. Then, an inorganic/organic hybrid solid electrolyte interphase with low interfacial charge transfer resistance and enhanced cycling durability is constructed successfully.
View Article and Find Full Text PDFSci Rep
January 2025
Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, 310003, Zhejiang, China.
Electrocatalytic materials with dual functions of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have received increasing attention in the field of zinc-air batteries (ZABs) research. In this study, bifunctional CoNC@NCXS catalysts were prepared by anchoring Co and N co-doped CoNC on N-doped carbon xerogel sphere (NCXS) based on the spatially confined domain effect and in-situ doping technique. CoNC@NCXS exhibited excellent ORR/OER activity in alkaline electrolytes with the ORR onset potential of 0.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen 361005, China.
Sluggish redox kinetics and dendrite growth perplex the fulfillment of efficient electrochemistry in lithium-sulfur (Li-S) batteries. The complicated sulfur phase transformation and sulfur/lithium diversity kinetics necessitate an all-inclusive approach in catalyst design. Herein, a compatible mediator with nanoscale-asymmetric-size configuration by integrating Co single atoms and defective CoTe (Co-CoTe@NHCF) is elaborately developed for regulating sulfur/lithium electrochemistry synchronously.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University 197 Inje-ro Gimhae Gyeongnam-do 50834 Republic of Korea
Recently, lithium-sulfur batteries have captivated those in the energy storage industry due to the low cost and high theoretical capacity of the sulfur cathode (1675 mA h g). However, to enhance the practical usability of Li-S batteries, it is crucial to address issues such as the insulating nature of sulfur cathodes and the high solubility of lithium polysulfides (LiPS, LiS , 4 ≤ ≤ 8) that cause poor active sulfur utilization. Designing innovative sulfur hosts can effectively overcome sulfur bottlenecks and achieve stable Li-sulfur batteries.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
Current lithium batteries experience significant performance degradation under extreme temperature conditions, both high and low. Traditional wide-temperature electrolyte designs typically addressed these challenges by manipulating the solvation sheath and selecting solvents with extreme melting/boiling points. However, these solvent-mediated solutions, while effective at one temperature extreme, invariably fail at the opposite end due to the inherent difficulties in maintaining solvent stability across wide temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!