The adoption of electronic health records in hospitals has ensured the availability of large datasets that can be used to predict medical complications. The trajectories of patients in real-world settings are highly variable, making longitudinal data modeling challenging. In recent years, significant progress has been made in the study of deep learning models applied to time series; however, the application of these models to irregular medical time series (IMTS) remains limited. To address this issue, we developed a generic deep-learning-based framework for modeling IMTS that facilitates the comparative studies of sequential neural networks (transformers and long short-term memory) and irregular time representation techniques. A validation study to predict retinopathy complications was conducted on 1207 patients with type 1 diabetes in a French database using their historical glycosylated hemoglobin measurements, without any data aggregation or imputation. The transformer-based model combined with the soft one-hot representation of time gaps achieved the highest score: an area under the receiver operating characteristic curve of 88.65%, specificity of 85.56%, sensitivity of 83.33% and an improvement of 11.7% over the same architecture without time information. This is the first attempt to predict retinopathy complications in patients with type 1 diabetes using deep learning and longitudinal data collected from patient visits. This study highlighted the significance of modeling time gaps between medical records to improve prediction performance and the utility of a generic framework for conducting extensive comparative studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.artmed.2022.102408 | DOI Listing |
Adv Sci (Weinh)
January 2025
DP Technology, Beijing, 100080, China.
Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.
View Article and Find Full Text PDFSci Rep
January 2025
North Carolina School of Science and Mathematics, Durham, NC, 27705, USA.
Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.
View Article and Find Full Text PDFNPJ Digit Med
January 2025
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs).
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer and Data Science, Minjiang University, Fuzhou, 350018, China.
This study presents a novel approach to identifying meters and their pointers in modern industrial scenarios using deep learning. We developed a neural network model that can detect gauges and one or more of their pointers on low-quality images. We use an encoder network, jump connections, and a modified Convolutional Block Attention Module (CBAM) to detect gauge panels and pointer keypoints in images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!