Cyclosporin A (CsA) is a common immunosuppressant wildly used in patients with organ transplant and autoimmune diseases; however, it can cause several adverse effects, such as nephrotoxicity and hypertension. The detailed mechanisms have not been completely understood. Atrial natriuretic factor (ANF) and its receptor (mGC-A) have been shown to play a crucial role in the regulation of blood pressure. Here, we investigated the effects of CsA on the activation of mGC-A in ANF-treated LLC-PK1 cells. In our study, ANF-induced mGC-A activities and superoxide generation in LLC-PK1 cells were measured by guanosine 3',5'-cyclic monophosphate (cGMP) radioimmunoassay and lucigenin-dependent chemiluminescence, respectively. We found that CsA can reduce about 60% of mGC-A activities in ANF-treated LLC-PK1 cells. CsA is known to induce superoxide. Addition of superoxide generators menadione and diamide mimicked the effects of CsA, whereas DPI (a reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase inhibitor) and Tiron (a superoxide quencher) blocked the suppressive effects of CsA on ANF-induced mGC-A activities. We previously showed that the catalytic domain of GC-A (GC-c) expresses guanylate cyclase activities. Addition of menadione, diamide, or peroxynitrite or transfection of Nox-4 NAD(P)H oxidase abolished GC-c activities. In conclusion, CsA inhibits ANF-stimulated mGC-A activities through superoxide and/or peroxynitrite generated by an NAD(P)H oxidase by interacting with the catalytic domain of mGC-A.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/cpb.c22-00327 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!