Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chromium emissions led to increased concentrations in soil, where it can affect soil organisms to relevant levels. With the aim of better understanding the effects of Cr throughout time, its toxicokinetics-toxicodynamics (TKTD) were evaluated in the soil model organism Enchytraeus crypticus to assess the development of internal concentrations and consequent toxic effects. To achieve this goal, organisms were exposed in LUFA 2.2 soil spiked with increasing CrCl concentrations. During the 21-day exposure period, survival, internal concentrations, and reproduction were evaluated at several time points up to 21 days. Uptake and elimination rate constants were 0.0044 kg soil/kg organism/day and 0.023 per day, respectively. Internal Cr concentrations increased with time, generally reaching equilibrium within 14 days with an estimated LC50 (based on internal metal concentrations) of 57.7 mg Cr/kg body DW. Internal Cr concentrations were regulated by the organisms up to exposure to 360 mg Cr/kg soil DW, where the elimination rate was highest, but at 546 mg Cr/kg soil DW the animals were no longer able to eliminate Cr, and the internal concentrations were well above the estimated LC50. At day 21, exposure to 546 mg Cr/kg soil DW significantly reduced survival by 23 %, while reproduction EC50 was 344 mg Cr/kg soil DW. This study highlights the advantages of using a TKTD approach to understand the development of internal metal concentrations in time and relate it to the phenotypical effects observed. Toxicity is better understood when also taking into account time and not just exposure concentration alone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.159868 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!