Alcohol dependence and the ventral hippocampal influence on alcohol drinking in male mice.

Alcohol

Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, United States; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC 29425-0742, United States.

Published: February 2023

Examining neural circuits underlying persistent, heavy drinking provides insight into the neurobiological mechanisms driving alcohol use disorder. Facilitated by its connectivity with other parts of the brain such as the nucleus accumbens (NAc), the ventral hippocampus (vHC) supports many behaviors, including those related to reward seeking and addiction. These studies used a well-established mouse model of alcohol (ethanol) dependence. After surgery to infuse DREADD-expressing viruses (hM4Di, hM3Dq, or mCherry-only) into the vHC and position guide cannula above the NAc, male C57BL/6J mice were treated in the CIE drinking model that involved repeated cycles of chronic intermittent alcohol (CIE) vapor or air (CTL) exposure alternating with weekly test drinking cycles in which mice were offered alcohol (15% v/v) 2 h/day. Additionally, smaller groups of mice were evaluated for either cFos expression or glutamate release using microdialysis procedures. In CIE mice expressing inhibitory (hM4Di) DREADDs in the vHC, drinking increased as expected, but CNO (3 mg/kg intraperitoneally [i.p.]) given 30 min before testing did not alter alcohol intake. However, in CTL mice expressing hM4Di, CNO significantly increased alcohol drinking (∼30%; p < 0.05) to levels similar to the CIE mice. The vHC-NAc pathway was targeted by infusing CNO into the NAc (3 or 10 μM/side) 30 min before testing. CNO activation of the pathway in mice expressing excitatory (hM3Dq) DREADDs selectively reduced consumption in CIE mice back to CTL levels (∼35-45%; p < 0.05) without affecting CTL alcohol intake. Lastly, activating the vHC-NAc pathway increased cFos expression and evoked significant glutamate release from the vHC terminals in the NAc. These data indicate that reduced activity of the vHC increases alcohol consumption and that targeted, increased activity of the vHC-NAc pathway attenuates excessive drinking associated with alcohol dependence. Thus, these findings indicate that the vHC and its glutamatergic projections to the NAc are involved in excessive alcohol drinking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868110PMC
http://dx.doi.org/10.1016/j.alcohol.2022.10.004DOI Listing

Publication Analysis

Top Keywords

alcohol
8
alcohol drinking
8
mice expressing
8
drinking
6
mice
6
alcohol dependence
4
dependence ventral
4
ventral hippocampal
4
hippocampal influence
4
influence alcohol
4

Similar Publications

Synchronous Interference of Dual Metabolic Pathways Mediated by HS Gas/GOx for Augmenting Tumor Microwave Thermal Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.

View Article and Find Full Text PDF

Antifungal activity of different extractions of drone larvae (apilarnil).

Nat Prod Res

January 2025

Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.

Drone larvae (DL) has many biological activities thanks to the bioactive components it contains, but there are very few studies on its antimicrobial activity. The aim of this research was to determine the antifungal activity of DL (raw and lyophilised) water and ethanol extracts against fluconazole (FLU) sensitive and resistant yeast strains. The 87 fungal strains obtained from clinical samples were identified by phenotypic and molecular methods, and broth microdilution test was used for antifungal activity.

View Article and Find Full Text PDF

We created a novel laboratory experience where undergraduate students explore the techniques used to study protein misfolding, unfolding, and aggregation. Despite the importance of protein misfolding and aggregation diseases, protein unfolding is not typically explored in undergraduate biochemistry laboratory classes. Yeast alcohol dehydrogenase (YADH) is used in the undergraduate biochemistry laboratory course at Miami University as the model system to explore protein overexpression and purification, bioinformatics, and enzyme characterization.

View Article and Find Full Text PDF

Objective: Preventing return to alcohol is of critical importance for patients with alcohol-related cirrhosis and/or alcohol-associated hepatitis. Acamprosate is a widely used treatment for alcohol use disorder (AUD). We assessed the impact of acamprosate prescription in patients with advanced liver disease on abstinence rates and clinical outcomes.

View Article and Find Full Text PDF

Objective: To compare the effectiveness and safety of budesonide-glycopyrrolate-formoterol, a twice daily metered dose inhaler, and fluticasone-umeclidinium-vilanterol, a once daily dry powder inhaler, in patients with chronic obstructive pulmonary disease (COPD) treated in routine clinical practice.

Design: New user cohort study.

Setting: Longitudinal commercial US claims data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!