Perivascular spaces and their role in neuroinflammation.

Neuron

Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.

Published: November 2022

It is uncontested that perivascular spaces play critical roles in maintaining homeostasis and priming neuroinflammation. However, despite more than a century of intense research on perivascular spaces, many open questions remain about the anatomical compartment surrounding blood vessels within the CNS. The goal of this comprehensive review is to summarize the literature on perivascular spaces in human neuroinflammation and associated animal disease models. We describe the cell types taking part in the morphological and functional aspects of perivascular spaces and how those spaces can be visualized. Based on this, we propose a model of the cascade of events occurring during neuroinflammatory pathology. We also discuss current knowledge gaps and limitations of the available evidence. An improved understanding of perivascular spaces could advance our comprehension of the pathophysiology of neuroinflammation and open a new therapeutic window for neuroinflammatory diseases such as multiple sclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905791PMC
http://dx.doi.org/10.1016/j.neuron.2022.10.024DOI Listing

Publication Analysis

Top Keywords

perivascular spaces
24
perivascular
6
spaces
6
spaces role
4
neuroinflammation
4
role neuroinflammation
4
neuroinflammation uncontested
4
uncontested perivascular
4
spaces play
4
play critical
4

Similar Publications

Immersive gamma music as a tool for enhancing glymphatic clearance in astronauts while improving their mental well-being.

Life Sci Space Res (Amst)

February 2025

Studio Ozark Henry, Conterdijk 23, Wulpen, Belgium. Electronic address:

Spaceflight occurs under extreme environmental conditions that pose significant risks to the physical and mental health and well-being of astronauts. Certain factors, such as prolonged isolation, monotony, disrupted circadian rhythms, heavy workload, and weightlessness in space, can trigger psychological distress and may contribute to a variety of mental health problems, including mood and anxiety disturbances. Recent findings regarding spaceflight-associated alterations in cerebrospinal fluid spaces, demonstrating enlargement of the brain's perivascular spaces from preflight to postflight, at least suggest reduced glymphatic clearance in microgravity, and have raised concerns about long-term cognitive health in astronauts.

View Article and Find Full Text PDF

Lung tissue from human patients and murine models of sickle cell disease pulmonary hypertension (SCD-PH) show perivascular regions with excessive iron accumulation. The iron accumulation arises from chronic hemolysis and extravasation of hemoglobin (Hb) into the lung adventitial spaces, where it is linked to nitric oxide depletion, oxidative stress, inflammation, and tissue hypoxia, which collectively drive SCD-PH. Here, we tested the hypothesis that intrapulmonary delivery of hemopexin (Hpx) to the deep lung is effective at scavenging heme-iron and attenuating the progression of SCD-PH.

View Article and Find Full Text PDF

Delirium is a common complication in elderly surgical patients and is associated with an increased risk of dementia. Although advanced age is a major risk factor, the mechanisms underlying postoperative delirium remain poorly understood. The glymphatic system, a brain-wide network of perivascular pathways, facilitates cerebrospinal fluid (CSF) flow and supports the clearance of metabolic waste.

View Article and Find Full Text PDF

NOTCH3 Mutation Causes Glymphatic Impairment and Promotes Brain Senescence in CADASIL.

CNS Neurosci Ther

January 2025

Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.

Aims: The aim of this study is to investigate the role of glymphatic function of cerebral autosomal dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL), the most common monogenic small vessel disease caused by NOTCH3 mutation, and to explore potential therapeutic strategies to improve glymphatic function.

Methods: We assessed glymphatic influx and efflux function in CADASIL mouse models (Notch3) and correlated these findings with brain atrophy in CADASIL patients. We also investigated the underlying mechanisms of glymphatic impairment, focusing the expression of AQP4 in astrocytic endfeet.

View Article and Find Full Text PDF

Introduction: While cerebral amyloid angiopathy is likely responsible for intracerebral hemorrhage (ICH) occurring in superficial (grey matter, vermis) cerebellar locations, it is unclear whether hypertensive arteriopathy (HA), the other major cerebral small vessel disease (cSVD), is associated with cerebellar ICH (cICH) in deep (white matter, deep nuclei, cerebellar peduncle) regions. We tested the hypothesis that HA-associated neuroimaging markers are significantly associated with deep cICH compared to superficial cICH.

Patients And Methods: Brain MRI scans from consecutive non-traumatic cICH patients admitted to a referral center were analyzed for cSVD markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!