In this investigation, ferric (Fe) and nickel (Ni) co-doped tin oxide (SnO) nanoparticles structural, optical, morphological, and antibacterial characteristics were synthesised, characterised, and examined. By employing SnCl·2HO and the transition metal precursors FeCl and NiCl·6HO with various Fe/Ni molar ratios, thermal annealing was carried out at a high temperature (700 °C). X-ray diffraction (XRD), UV-Visible spectroscopy, Photoluminescence (PL), FT-IR, and scanning electron microscopy (SEM) with energy dispersive X-ray techniques (EDX) were used to examine the materials' structural, chemical, optical, morphological, and anti-microbial capabilities. The average particle size of pure and co-doped SnO nanoparticles was determined to be around 52 nm and 15 nm, and SnO crystallites were observed to present tetragonal rutile structure with space group P (No.136). Metal ions were replaced in the Sn lattice, as shown by Fe and Ni co-doped SnO nanoparticles. Pure and co-doped samples have capsule and sphere-like features in their SEM morphology. Using UV-visible diffuse reflectance spectroscopy, the optical property was examined, and it was observed that the band gaps for pure and co-doped SnO were 3.73 eV and 3.53 eV, respectively. The functional groups and incorporation of Fe and Ni in the prepared powder were also validated by FT-IR and EDX studies. By utilising the agar well diffusion technique and Nutrient agar, the antibacterial properties of pure, Ni-Fe co-doped SnO nanoparticles annealed at 700 °C were assessed. They were evaluated against various Gram-positive bacteria (Staphylococcus pheumoniae) and Gram-negative bacteria (Shigella dysenteria). The zone of incubation was found against the Gram +Ve and Gram -Ve bacterial strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2022.121996 | DOI Listing |
Sci Rep
December 2024
School of Physics and Materials Science, Shoolini University, Solan, H.P., India.
The industrial sector faces a significant challenge in finding the highly effective and efficient treatments for harmful dye-based color effluents. In this study, pure and cobalt doped barium hexaferrite of chemical formula, BaCoFeO (x = 0-0.06) are made via sol-gel auto-combustion (SC) methodology.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States.
Co-doped ZIF-8 as a water-stable visible light photocatalyst was prepared by using a one-pot, fast, cost-effective, and environmentally friendly method. The band structure of ZIF-8 was tuned through the incorporation of different percentages of cobalt to attain an optimal band gap ( ) that enables the activation of ZIF-8 under visible light and minimizes the recombination of photogenerated charge carriers. A magnetic composite of Co-doped ZIF-8 was also synthesized to facilitate catalyst recycling and reusability through the application of an external magnetic field.
View Article and Find Full Text PDFHeliyon
December 2024
Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187, Luleå, Sweden.
The study investigates the impact of incorporating Ni and Cu into the lattice of ZnO nanoparticles (NPs) to enhance their anticancer and antioxidant properties. Characterization techniques including pXRD, FTIR, UV-visible absorption spectroscopy, FESEM, and EDAX confirm the successful synthesis and structural modifications of Ni/Cu-ZnO NPs. Anticancer activity against breast cancer (MDA) and normal skin (BHK-21) cells reveals dose-dependent cytotoxicity, with Ni/Cu-ZnO NPs exhibiting higher efficacy against MDA cells while being less harmful to BHK-21 cells.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
Sci Rep
November 2024
Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, India.
Here, Er/Yb Co-doped CaMoO materials (ErYbCaMoO NPs where x = 0, 0.01 and y = 0, 0.05, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!